PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine learning versus human-developed algorithms in image analysis of microstructures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automatic image analysis is nowadays a standard method in quality control of metallic materials, especially in grain size, graphite shape and non-metallic content evaluation. Automatically prepared solutions, based on machine learning, constitute an effective and sufficiently precise tool for classification. Human-developed algorithms, on the other hand, require much more experience in preparation, but allow better control of factors affecting the final result. Both attempts were described and compared.
Wydawca
Rocznik
Strony
412--416
Opis fizyczny
Bibliogr. 8 poz., rys., tab.
Twórcy
  • Cracow University of Technology, Cracow, Poland
  • Cracow University of Technology, Cracow, Poland
Bibliografia
  • 1.Brian L. DeCost, Elizabeth A. Holm, 2015. A computer vision approach for automated analysis and classification of microstructural image data, Computational Materials Science, 110, 126- 133, DOI: 10.1016/j.commatsci.2015.08.011
  • 2.Chowdhury A., Kautz E., Yener B., Lewis D., 2016. Image driven machine learning methods for microstructure recognition, Computational Materials Science, 123, 176-187, DOI: 10.1016/j.commatsci.2016.05.034.
  • 3.Geron A., 2018. Uczenie maszynowe z użyciem Scikit-Learn i TensorFlow, Helion SA, Gliwice Poland [in Polish].
  • 4.Prasanna P., Dana K. J., Gucunski N., Basily B. B., Hung M. La, Lim R. S., Parvardeh H., 2014. Automated Crack Detection on Concrete Bridges, IEEE Transactions on Automation Science and Engineering, 13, 591-599, DOI: 10.1109/TASE.2014.2354314
  • 5.Redmon J., Divvala S., Girshick R., Farhadi A., 2015. You Only Look Once. Unified, Real-Time Object Detection, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 779-788, DOI: 10.1109/CVPR.2016.91.
  • 6.Shi Y., Cui L., Qi Z., Meng F., Chen Z., 2016. Automatic Road Crack Detection Using Random Structured Forests, IEEE Transactions on Intelligent Transportation Systems, 17, 3434- 3445, DOI: 10.1109/TITS.2016.2552248
  • 7.Wojnar, L., 1999. Image analysis. Applications in materials engineering, CRC Press, Boca Raton, USA.
  • 8.Zocca V., Spacagna G., Slater D., Roelants P., 2017. Deep learning. Uczenie głębokie z językiem Python. Sztuczna inteligencja i sieci neuronowe, Helion SA, Gliwice Poland [in Polish].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7332de2d-2059-4a70-b0aa-62838ba1cb58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.