Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is proved analytically that the complex growth rate σ= σr+iσi (σr and σi are the real and imaginary parts of σ, respectively) of an arbitrary oscillatory motion of neutral or growing amplitude in ferrothermohaline convection in a ferrofluid layer for the case of free boundaries is located inside a semicircle in the right half of the σrσi-plane, whose center is at the origin and (formula) where Rs is the concentration Rayleigh number, Pr′ is the solutal Prandtl number, M1′ is the ratio of magnetic flux due to concentration fluctuation to the gravitational force, and M5 is the ratio of concentration effect on magnetic field to pyromagnetic coefficient. Further, bounds for the case of rigid boundaries are also derived separately.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
114--122
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla 171005, India
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla 171005, India
autor
- Department of Mathematics and Statistics, Himachal Pradesh University, Summer Hill, Shimla 171005, India
autor
- Department of Mathematics, Central University of Himachal Pradesh, Dharamshala, District Kangra-176215, India
Bibliografia
- [1] Banerjee M.B., Katoch D.C., Dube G.S., Banerjee, K. (1981), Bounds for growth rate of perturbation in thermohaline convection, Proc. Roy. Soc. London A, 378, 301–304.
- [2] Finlayson B.A. (1970), Convective instability of ferromagnetic fluids, J. Fluid Mech., 40, 753–767.
- [3] Gupta M.D., Gupta A.S. (1979), Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis, Int. J. Eng. Sci., 17, 271–277.
- [4] Gupta J.R., Sood.S.K., Shandil.R.G., Banerjee M.B., Banerjee K. (1983), Bounds for the growth of a perturbation in some double-diffusive convection problems, J. Aust. Math. Soc. Ser. B, 25, 276–285.
- [5] Lalas D.P., Carmi S. (1971), Thermoconvective stability of ferrofluids, Phys. Fluids, 14(2), 436–437.
- [6] Nataraj R., Bhavya S. (2019), Effect of Exponentially Temperature-Dependent Viscosity on the Onset of Penetrative Ferro-Thermal-Convection in a Saturated Porous Layer via Internal Heating, Journal of Electromagnetic Analysis and Applications, 11, 101–116.
- [7] Odenbach S. (2002), Ferrofluids: Magnetically controllable fluids and their applications, Springer-Verlag, Berlin, Heidelberg.
- [8] Odenbach S. (2002a), Magnetoviscous effects in ferrofluids, Springer-Verlag, Berlin, Heidelberg.
- [9] Prakash J. (2012), On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer, J. Magn. Magn. Mater. 324(8), 1523–1527.
- [10] Prakash J. (2013), On arresting the complex growth rates in ferromagnetic convection in a ferrofluid saturated porous layer, J. Porous Media, 16(3), 217–226.
- [11] Prakash J., and Gupta S. (2013), On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer, J. Magn. Magn. Mater. 345, 201–207.
- [12] Prakash J. (2014), On exchange of stabilities in ferromagnetic convection in a rotating ferrofluid saturated porous layer, J. Appl. Fluid Mech. 7(1), 147–154.
- [13] Prakash J., Vaid K., Bala R. (2014), Upper limits to the complex growth rates in triply diffusive convection, Proc. Indian Nat. Sci. Acad., 80(1), 115–122.
- [14] Prakash J., Bala R., Kumari K. (2017), Upper bounds for the complex growth rates in ferromagnetic convection in a rotating porous medium: Darcy-Brinkman Model, Bull. Cal. Math. Soc. 109(2), 153–170.
- [15] Prakash J., Kumar R., Kumari K. (2017a), Thermal convection in a ferromagnetic fluid layer with magnetic field dependent viscosity: A correction applied, Studia Geotech. et Mech. 39(3), 39–46.
- [16] Rahman, H., and Suslov S.A. (2015), Thermomagnetic convection in a layer of ferrofluids placed in a uniform oblique external magnetic field, J. Fluid Mech. 764, 316–348.
- [17] Rosensweig R.E., Zahn M., Volger T. (1978), Stabilization of fluid penetration through a porous medium using magnetisable fluids, in: Thermomechanics of magnetic fluids (Ed. B. Berkovsky), Hemisphere, Washington, DC, 195–211.
- [18] Rosensweig. R. E. (1985), Ferrohydrodynamics, Cambridge University Press, Cambridge.
- [19] Sekar. R. and Vaidyanathan G. (1993), Convective instability of a magnetized ferrofluid in a rotating porous medium, Int. J. Eng. Sci. 31, 1139–1150.
- [20] Sekar R., Vaidyanathan G., Ramanathan A. (1993), The ferroconvection in fluids saturating a rotating densely packed porous medium, Int. J. Eng. Sci. 13, 241–250.
- [21] Sekar R., Vaidyanathan G., Ramanathan A. (1996), Ferroconvection in an anisotropic porous medium, Int. J. Engng. Sci. 34(4), 399–405.
- [22] Sekar R., Vaidyanathan G., Ramanathan A. (2000), Effect of rotation on ferrothermohaline convection, J. Magn. Magn. Mater. 218, 266–272.
- [23] Sekar R., Raju K., Vasanthakumari R. (2013), A linear analytical study on Soret-driven ferrothermohaline convection in an anisotropic porous medium, J. Magn. Magn. Mater. 331, 122–128.
- [24] Sekar, R. and Raju K. (2015), Effect of sparse distribution pores in thermohaline convection in a micropolar ferromagnetic fluid, J. Appl. Fluid Mech., 8(4), 899–910.
- [25] Sekar R., and Murugan D. (2018), Stability analysis of ferrothermohaline convection in a Darcy porous medium with Soret and MFD viscosity effects, Tecnica Italiana-Ita. J. Engng. Sci. 61+1(2), 151–161.
- [26] Shliomis M. I. (1974), Magnetic Fluids, Sov. Phys. Uspekhi, 17, 153–169.
- [27] Sunil, Bharti P.K., Sharma R.C. (2004), Thermosolutal convection in ferromagnetic fluid, Arch. Mech., 56(2), 117–135.
- [28] Sunil, Divya, and Sharma R.C. (2004a), Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium, J. Geophys. Eng., 1, 116–127.
- [29] Vaidyanathan G., Sekar R., Balasubramanian R. (1991), Ferroconvective instability of fluids saturating a porous medium, Int. J. Engng. Sci., 29, 1259–1267.
- [30] Vaidyanathan G., Sekar R., Ramanathan A. (1995), Ferro thermohaline convection in a porous medium, J. Magn. Magn. Mater. 149, 137–142.
- [31] Vaidyanathan G., Sekar R., Ramanathan A. (1997), Ferrothermohaline convection, J. Magn. Magn. Mater. 176, 321–330.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-732f5673-a3ea-4327-9ccb-ecf59d890e91