PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

How much a geometrical model of a honeycomb seal can be simplied in the CFD calculation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the influence of geometry simplification on the results obtained in the computational fluid dynamics simulation. The subject of simulation was part of the honeycomb seal located at the inlet to high pressure part of a steam turbine. There were three diferent geometrical models assumed in the calculations. First one was two-dimensional case and two others were three-dimensional, one with the radius of curvature and one without. Numerical simulations were performed for 15 sets of boundary conditions to compare flow characteristics for each geometrical case.
Słowa kluczowe
Rocznik
Tom
Strony
55--64
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Department of Energy Conversion, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Faculty of Mechanical Engineering, Gdańsk University of Technology, Siedlicka 4, 80-001 Gdańsk, Poland
Bibliografia
  • [1] Badur J.: Five Lecture of Contemporary Fluid Termomechanics. Gdańsk, 2005 (in Polish), www.imp.gda.pl/fleadmin/doc/o2/z3/.../ 2005_piecwykladow.pdf
  • [2] Bugliaev V.T., Klimtsov A.A., Perevezentsev V.T., Perevezentsev S.V.: Honeycomb Seals in Turbomachinery. BSTU Publisher, Bryansk 2002 (in Russian).
  • [3] Childs D., Elrod D., Hale K.: Annular honeycomb seals: tests results for leakage and rotordynamic coeficients; comparison to labyrinth and smooth configurations. J. Tribol. T. ASME 111(1989)2, 293-300.
  • [4] Chochua G., Shyy W., Moore J.: Thermophysical modeling for honeycomb-stator gas annular seal. In: Proc. 35th AIAA Thermophysics Conf., Anaheim, June 11-14, 2001.
  • [5] Choi Dong-Chun, David L., Rhode D. L.: Development of a two-dimensional computational fluid dynamics approach for computing three-dimensional honeycomb labyrinth leakage. J. Eng. Gas Turb. Power - T. ASME 126(2004), 4, 794-802.
  • [6] Dawson M.P., Childs D.: Measurements versus predictions for the dynamic impedance of annular gas seals-part II: smooth and honeycomb geometries. J. Eng. Gas Turb. Power - T. ASME 124(2002), 4, 963-970.
  • [7] Denton J.D.: Loss mechanisms in turbomachines. J. Turbomach. - T. ASME 115(1993).
  • [8] Frączek D., Wróblewski W.: Validation of numerical models for flow simulation in labyrinth seals. J. Phys. Conf. Ser. 760(2016).
  • [9] Gryboś R.: Rudiments of Fluid Mechanics.PWN, Warszawa 1998. (in Polish)
  • [10] Ha T., Childs D., Morrison G.: Friction-factor characteristics for narrow channels with honeycomb surfaces. J. Tribol. - T. ASME114(1992), 4, 714-721
  • [11] Kaszowski P., Dzida M.: CFD analysis of fluid flow through the labyrinth seal. Trans. Inst. Fluid-Flow Mach. 130(2015), 71-82.
  • [12] Kosowski K., Piwowarski M., Stępień R., Włodarski W.: Aerodynamic forces in turbine stages. Foundation for the Promotion of the Shipbuilding Industry and Maritime Economy, Gdańsk 2009 (in Polish).
  • [13] Kosowski K.: Steam and Gas Turbines, with Examples of ALSTOM Technology. ALSTOM Power, Elbląg 2007.
  • [14] Nastałek L, Karcz M., Stawiński D., Zakrzewski W., Ziółkowski P., Szyrejko C., Topolski J., Werner R., Badur J.: On the internal eficiency of a turbine stage: classical and computational fluid dynamics definitions. Trans. Inst. Fluid-Flow Mach. 124(2012), 17-39.
  • [15] Piwowarski M., Kosowski K.: Seals of steam turbines. Foundation for the Promotion of the Shipbuilding Industry and Maritime Economy, Gda«sk 2009 (in Polish).
  • [16] D'Souza R., Childs D.: A comparison of rotordynamic-coeffcent predictions for annular honeycomb gas seals using three diferent friction-factor models. Tribol. - T. ASME 124(2002), 3, 524-529.
  • [17] Szymanski A., Dykas S., Wróblewski W., Majkut M., Strozik M.: Experimental and numerical study on the performance of the smooth-land labyrinth seal. J. Phys.: Conf. Ser. 760(2016).
  • [18] Tesch K.: Fluid Mechanics, Gdansk University of Technology Publishing, Gdansk 2008 (in Polish) .
  • [19] Wasilczuk F., Flaszyńki P., Doerffer P.: Numerical investigations of flow structure in gas turbine shroud gap. J. Phys. Conf. Ser. 760(2016).
  • [20] Ziółkowski P., Kowalczyk T., Hernet J., Kornet S.: The thermodynamic analysis of the Szewalski hierarchic vapour cycle cooperating with a system of waste heat recovery. Trans. Inst. Fluid-Flow Mach. 129(2015), 51-75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-732b7863-30b6-451a-9623-c83ce55d4345
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.