PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cracking resistance of recycled mineral-cement-emulsion mixtures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Odporność na pękanie mieszanek mineralno-cementowo-emulsyjnych wytworzonych w procesie recyklingu
Języki publikacji
EN PL
Abstrakty
EN
Recycling enables reduction in usage of natural resources in road construction, positively affecting its environmental aspects. Construction materials obtained through recycling include mineral-cement-emulsion (MCE) mixtures, which are used in road pavements as base courses. MCE mixture consists of aggregate, added aggregate that improves gradation, bituminous emulsion and cement. Aggregate may be substituted with reclaimed asphalt material obtained from deteriorated pavements. Use of cement in pavement structure generates cracks that propagate upwards through the upper layers. When innovative binders are used instead of pure cement, the number of cracks may be reduced, improving the life of the entire pavement structure. The article presents selected problems pertaining to MCE mixtures produced using an innovative cement-based binder incorporating cement by-pass dust (CBPD). The performed laboratory tests encompassed fatigue life and fracture toughness. The innovative cement-based binders displayed significant influence on the obtained results. Used in combination with reclaimed asphalt pavement material, they reduced cracking in MCE mixtures, improving their fatigue life.
PL
Recykling pozwala na ograniczenie użycia w budownictwie drogowym surowców naturalnych, pozytywnie wpływając na aspekty ochrony środowiska. Do materiałów budowlanych powstających dzięki recyklingowi zalicza się mieszanka mineralno-cemen- towo-emulsyjna (MCE), która jest stosowana do warstw podbudowy konstrukcji nawierzchni drogowych. MCE składa się z kruszywa, kruszywa doziarniającego oraz emulsji asfaltowej i cementu jako spoiw. Kruszywo można zastąpić destruktem asfaltowym ze zdegradowanych nawierzchni drogowych. Zastosowanie cementu w warstwach podbudowy generuje pojawienie się spękań propagujących w kierunku górnych warstw nawierzchni drogowej. Poprzez zastosowanie innowacyjnych spoiw zamiast cementu można zredukować liczbę spękań, a tym samym pozytywnie wpłynąć na trwałość całej konstrukcji nawierzchni. W artykule przedstawiono wybrane zagadnienia dotyczące zastosowania w mieszankach MCE innowacyjnego spoiwa cementowego, wykorzystującego uboczne produkty pylaste pochodzące z cementowni (UCPP). Badania laboratoryjne prowadzone były w zakresie analiz trwałości zmęczeniowej i odporności na pękanie. Innowacyjne spoiwa cementowe wykazały istotny wpływ na rezultaty badań. W połączeniu z destruktem asfaltowym zapewniły redukcję zjawiska pękania w mieszankach typu MCE, co poprawiło ich trwałość zmęczeniową.
Rocznik
Strony
19--39
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, 41 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław
  • Wrocław University of Science and Technology, Faculty of Civil Engineering, 41 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław
Bibliografia
  • 1. Zhang J., Ding L., Li F., Peng J.: Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China. Journal of Cleaner Production, 255, 2020, ID article: 120223, DOI: 10.1016/j.jclepro.2020.120223
  • 2. Mehrjardi G.T., Azizi A., Haji-Azizi A., Asdollafardi G.: Evaluating and improving the construction and demolition waste technical properties to use in road construction. Transportation Geotechnics, 23, 2020, ID article: 100349, DOI: 10.1016/j.trgeo.2020.100349
  • 3. Huber S., Henzinger C., Heyer D.: Influence of water and frost on the performance of natural and recycled materials used in unpaved roads and road shoulders. Transportation Geotechnics, 22, 2020, ID article: 100305, DOI: 10.1016/j.trgeo.2019.100305
  • 4. Tavira J., Jiménez J.R., Ledesma E.F., López-Uceda A., Ayuso J.: Real-scale study of a heavy traffic road built with in situ recycled demolition waste. Journal of Cleaner Production, 248, 2020, ID article: 119219, DOI: 10.1016/j.jclepro.2019.119219
  • 5. Zieliński K.: Impact of recycled aggregates on selected physical and mechanical characteristics of cement concrete. Procedia Engineering, 172, 2017, 1291-1296, DOI: 10.1016/j.proeng.2017.02.157
  • 6. Liu L., Li Z., Cai G., Liu X., Yan S.: Humidity field characteristics in road embankment constructed with recycled construction wastes. Journal of Cleaner Production, 259, 2020, ID article: 120977, DOI: 10.1016/j.jclepro.2020.120977
  • 7. Liu L., Li Z., Congress S.S.C., Liu X., Dai B.: Evaluating the influence of moisture on settling velocity of road embankment constructed with recycled construction wastes. Construction and Building Materials, 241, 2020, ID article: 117988, DOI: 10.1016/j.conbuildmat.2019.117988
  • 8. Cristelo N., Vieira C.S., de Lurdes Lopes M.: Geotechnical and geoenvironmental assessment of recycled construction and demolition waste for road embankments. Procedia Engineering, 143, 2016, 51-58, DOI: 10.1016/j.proeng.2016.06.007
  • 9. Soleimanbeigi A., Edil T.B., Benson C.H.: Engineering properties of recycled materials for use as embankment fill. Geo-Congress 2014, Atlanta, 3645-3657, DOI: 10.1061/9780784413272.353
  • 10. Soleimanbeigi A., Edil T.B.: Compressibility of recycled materials for use as highway embankment fill. Journal of Geotechnical and Geoenvironmental Engineering, 141, 5, 2015, DOI: 10.1061/(ASCE)GT.1943-5606.0001285
  • 11. Arulrajah A., Disfani M.M., Horpibulsuk S., Suksiripattanapong C., Prongmanee N.: Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construction and Building Materials, 58, 2014, 245-257, DOI: 10.1016/j.conbuildmat.2014.02.025
  • 12. Azam A.M., Cameron D.A.: Geotechnical properties of blends of recycled clay masonry and recycled concrete aggregates in unbound pavement construction. Journal of Materials in Civil Engineering, 25, 6, 2013, 788-798, DOI: 10.1061/(ASCE)MT.1943-5533.0000634
  • 13. Gabr A.R., Cameron D.A.: Properties of recycled concrete aggregate for unbound pavement construction. Journal of Materials in Civil Engineering, 24, 6, 2012, DOI: 10.1061/(ASCE)MT.1943-5533.0000447
  • 14. Jiménez J.R., Agrela F., Ayuso J., López M.: A comparative study of recycled aggregates from concrete and mixed debris as material for unbound road sub-base. Materiales de Construcción, 61, 302, 2011, 289-302, DOI: 10.3989/mc.2010.54009
  • 15. O’Mahony M.M., Milligan G.W.E.: Use of recycled materials in subbase layers. Transportation Research Record, 1310, 1991, 73-80, https://onlinepubs.trb.org/Onlinepubs/trr/1991/1310/1310-010.pdf (15.01.2023)
  • 16. Vegas I., Ibańez J.A., Lisbona A., de Cortazar A.S., Frías M.: Pro-normative research on the use of mixed recycled aggregates in unbound road sections. Construction and Building Materials, 25, 5, 2011, 2674-2682, DOI: 10.1016/j.conbuildmat.2010.12.018
  • 17. Norambuena-Contreras J., Quilodran J., Gonzalez-Torre I., Chavez M., Borinaga-Trevińo R.: Electrical and thermal characterisation of cement-based mortars containing recycled metallic waste. Journal of Cleaner Production, 190, 2018, 737-751, DOI: 10.1016/j.jclepro.2018.04.176
  • 18. Hagnell M.K., Ĺkermo M.: The economic and mechanical potential of closed loop material usage and recycling of fibre-reinforced composite materials. Journal of Cleaner Production, 223, 2019, 957-968, DOI: 10.1016/j.jclepro.2019.03.156
  • 19. López-Alonso M., Martinez-Echevarria M.J., Garach L., Galán A., Ordońez J., Agrela F.: Feasible use of recycled alumina combined with recycled aggregates in road construction. Construction and Building Materials, 195, 2019, 249-257, DOI: 10.1016/j.conbuildmat.2018.11.084
  • 20. Ren J., Wang S., Zang G.: Effects of recycled aggregate composition on the mechanical characteristics and material design of cement stabilized cold recycling mixtures using road milling materials. Construction and Building Materials, 244, 2020, ID article: 118329, DOI: 10.1016/j.conbuildmat.2020.118329
  • 21. Fedrigo W., Núńez W.P., Kleinert T.R., Matuella M.F., Ceratti J.A.P.: Strength, shrinkage, erodibility and capillary flow characteristics of cement-treated recycled pavement materials. International Journal of Pavement Research and Technology, 10, 5, 2017, 393-402, DOI: 10.1016/j.ijprt.2017.06.001
  • 22. Wang Q.Z., Wang N.N., Tseng M.L., Huang Y.M., Li N.L.: Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China. Journal of Cleaner Production, 249, 2020, ID article: 119411, DOI: 10.1016/j.jclepro.2019.119411
  • 23. Nanjegowda V.H., Biligiri K.P.: Recyclability of rubber in asphalt roadway systems: A review of applied research and advancement in technology. Resources, Conservation & Recycling, 155, 2020, ID article: 104655, DOI: 10.1016/j.resconrec.2019.104655
  • 24. Liu L., Cai G., Zhang J., Liu X., Liu K.: Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renewable and Sustainable Energy Reviews, 126, 2020, ID article: 109831, DOI: 10.1016/j.rser.2020.109831
  • 25. Nwakaire C.M., Yap S.P., Yuen C.W., Onn C.C., Koting S., Babalghaith A.M.: Laboratory study on recycled concrete aggregate based asphalt mixtures for sustainable flexible pavement surfacing. Journal of Cleaner Production, 262, 2020, ID article: 121462, DOI: 10.1016/j.jclepro.2020.121462
  • 26. Kox S., Vanroelen G., Van Herck J., de Krem H., Vandoren B.: Experimental evaluation of the high-grade properties of recycled concrete aggregates and their application in concrete road pavement construction. Case Studies in Construction Materials, 11, 2019, ID article: e00282, DOI: 10.1016/j.cscm.2019.e00282
  • 27. Zhang L.W., Sojobi A.O., Kodur V.K.R., Liew K.M.: Effective utilization and recycling of mixed recycled aggregates for a greener environment. Journal of Cleaner Production, 236, 2019, ID article: 117600, DOI: 10.1016/j.jclepro.2019.07.075
  • 28. Visintin P., Xie T., Bennett B.: A large-scale life-cycle assessment of recycled aggregate concrete: The influence of functional unit, emissions allocation and carbon dioxide uptake. Journal of Cleaner Production, 248, 2020, ID article: 119243, DOI: 10.1016/j.jclepro.2019.119243
  • 29. Kuźniewski J., Skotnicki Ł.: Properties of mineral-cement emulsion mixtures based on concrete aggregates from recycling. Case Studies in Construction Materials, 12, 2019, ID article: e00309, DOI: 10.1016/j.cscm.2019.e00309
  • 30. Chomicz-Kowalska A., Maciejewski K.: Performance and viscoelastic assessment of high-recycle rate cold foamed bitumen mixtures produced with different penetration binders for rehabilitation of deteriorated pavements. Journal of Cleaner Production, 258, 2020, ID article: 120517, DOI: 10.1016/j.jclepro.2020.120517
  • 31. Bostanci S.C.: Use of waste marble dust and recycled glass for sustainable concrete production. Journal of Cleaner Production, 251, 2020, ID article: 119785, DOI: 10.1016/j.jclepro.2019.119785
  • 32. Birgisdóttir H., Bhander G., Hauschild M.Z., Christensen T.H.: Life cycle assessment of disposal of residues from municipal solid waste incineration: Recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Waste Management, 27, 8, 2007, S75-S84, DOI: 10.1016/j.wasman.2007.02.016
  • 33. Loaiza A., Colorado H.A.: Marshall stability and flow tests for asphalt concrete containing electric arc furnace dust waste with high ZnO contents from the steel making process. Construction and Building Materials, 166, 2018, 769-778, DOI: 10.1016/j.conbuildmat.2018.02.012
  • 34. Chen T., Luan Y., Zhu J., Huang X., Ma S.: Mechanical and microstructural characteristics of different interfaces in cold recycled mixture containing cement and asphalt emulsion. Journal of Cleaner Production, 258, 2020, ID article: 120674, DOI: 10.1016/j.jclepro.2020.120674
  • 35. Chen T., Ma T., Huang X., Ma S., Tang F., Wu S.: Microstructure of synthetic composite interfaces and verification of mixing order in cold-recycled asphalt emulsion mixture. Journal of Cleaner Production, 263, 2020, ID article: 121467, DOI: 10.1016/j.jclepro.2020.121467
  • 36. Bai G., Zhu C., Liu C., Liu B.: An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and Building Materials, 240, 2020, ID article: 117978, DOI: 10.1016/j.conbuildmat.2019.117978
  • 37. Mallick R.B., Radzicki M.J., Zaumanis M., Frank R.: Use of system dynamics for proper conservation and recycling of aggregates for sustainable road construction. Resources, Conservation and Recycling, 86, 2014, 61-73, DOI: 10.1016/j.resconrec.2014.02.006
  • 38. Sultan A.A.M., Lou E., Mativenga P.T.: What should be recycled: An integrated model for product recycling desirability. Journal of Cleaner Production, 154, 2017, 51-60, DOI: 10.1016/j.jclepro.2017.03.201
  • 39. Bendimerad A.Z., Delsaute B., Rozičre E., Staquet S., Loukili A.: Advanced techniques for the study of shrinkage-induced cracking of concrete with recycled aggregates at early age. Construction and Building Materials, 233, 2020, ID article: 117340, DOI: 10.1016/j.conbuildmat.2019.117340
  • 40. Skotnicki Z.Ł., Kuźniewski J., Szydło A.: Stiffness identification of foamed asphalt mixtures with cement, evaluated in laboratory and in situ in road pavements. Materials, 13, 5, 2020, ID article: 1128, DOI: 10.3390/ma13051128
  • 41. Yildirim S.T., Meyer C., Herfellner S.: Effects of internal curing on the strength, drying shrinkage and freeze-thaw resistance of concrete containing recycled concrete aggregates. Construction and Building Materials, 91, 2015, 288-296, DOI: 10.1016/j.conbuildmat.2015.05.045
  • 42. Li Q., Wang Z., Li Y., Shang J.: Cold recycling of lime-fly ash stabilized macadam mixtures as pavement bases and subbases. Construction and Building Materials, 169, 2018, 306-314, DOI: 10.1016/j.conbuildmat.2018.03.030
  • 43. Guo H., Wang Z., Liang Q., Li G.: Improvement of stability and mechanical properties of cement asphalt emulsion composites using nano fibrillated celluloses. Cement and Concrete Composites, 125, 2022, ID article: 104330, DOI: 10.1016/j.cemconcomp.2021.104330
  • 44. Wang J., Zhang J., Cao D., Dang H., Ding B.: Comparison of recycled aggregate treatment methods on the performance for recycled concrete. Construction and Building Materials, 234, 2020, ID article: 117366, DOI: 10.1016/j.conbuildmat.2019.117366
  • 45. Abate S.Y., Song K.I., Song J.K., Lee B.Y., Kim H.K.: Internal curing effect of raw and carbonated recycled aggregate on the properties of high-strength slag-cement mortar. Construction and Building Materials, 165, 2018, 64-71, DOI: 10.1016/j.conbuildmat.2018.01.035
  • 46. Wu M., Zhang Y., Jia Y., She W., Liu G.: Study on the role of activators to the autogenous and drying shrinkage of lime-based low carbon cementitious materials. Journal of Cleaner Production, 257, 2020, ID article: 120522, DOI: 10.1016/j.jclepro.2020.120522
  • 47. Abdollahnejad Z., Mastali M., Woof B., Illikainen M.: High strength fiber reinforced one-part alkali activated slag/fly ash binders with ceramic aggregates: Microscopic analysis, mechanical properties, drying shrinkage, and freeze-thaw resistance. Construction and Building Materials, 241, 2020, ID article: 118129, DOI: 10.1016/j.conbuildmat.2020.118129
  • 48. Zhou J., Zeng M., Chen Y., Zhong M.: Evaluation of cement stabilized recycled concrete aggregates treated with waste oil and asphalt emulsion. Construction and Building Materials, 199, 2019, 143-153, DOI: 10.1016/j.conbuildmat.2018.12.028
  • 49. Kukiełka J., Bańkowski W.: The experimental study of mineral-cement-emulsion mixtures with rubber powder addition. Construction and Building Materials, 226, 2019, 759-766, DOI: 10.1016/j.conbuildmat.2019.07.276
  • 50. Dołżycki B., Jaczewski M., Szydłowski C.: The long-term properties of mineral-cement-emulsion mixtures. Construction and Building Materials, 156, 2017, 799-808, DOI: 10.1016/j.conbuildmat.2017.09.032
  • 51. Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: Ocena wpływu innowacyjnego środka wiążącego na właściwości fizyczne, mechaniczne i reologiczne recyklowanej podbudowy wykonanej z mieszanki mineralno-spoiwowejz emulsją asfaltową. Program „Nowoczesne technologie materiałowe”, TECHMATSTRATEG, Raport nr 3/2/PWr/2019
  • 52. Iwański M., Chomicz-Kowalska A., Buczyński P., Mazurek G.: Optymalizacja składu środka wiążącego o uniwersalnym charakterze zastosowania w recyklowanych podbudowach. Opracowanie nomogramów uzyskanych właściwości dla zapraw i zaczynów zgodnie z założonym planem eksperymentu dla zaprojektowanych spoiw mieszanych. Program „Nowoczesne technologie materiałowe”, TECHMATSTRATEG, Raport nr 2/1/PŚk/2018
  • 53. Dołżycki B.: Instrukcja projektowania i wbudowania mieszanek mineralno-cementowo-emulsyjnych (MCE). Załącznik nr 9.4.2 RID, 2019
  • 54. Szydło A., Mackiewicz P., Skotnicki Ł., Kuźniewski J.: Innowacyjna technologia wykorzystująca optymalizację środka wiążącego przeznaczona do technologii recyklingu głębokiego na zimno konstrukcji nawierzchni zapewniająca jej trwałość eksploatacyjną, Raport serii SPR 74, Politechnika Wrocławska, Wrocław, 2019
  • 55. Kuźniewski J., Skotnicki Ł.: Influence of the compaction method on mineral-cement emulsion mixture properties. Journal of Materials in Civil Engineering, 28, 11, 2016, ID article: 04016138, DOI: 10.1061/(ASCE)MT.1943-5533.0001651
  • 56. Kuźniewski J., Skotnicki Z.Ł., Szydło A.: Fatigue durability of asphalt-cement mixtures. Bulletin of the Polish Academy of Sciences: Technical Sciences, 63, 1, 2020, 107-111, DOI: 10.1515/bpasts-2015-0012
  • 57. Guha A.H.; Assaf G.J.: Effect of Portland cement as a filler in hot-mix asphalt in hot regions. Journal of Building Engineering, 28, 2020, ID atticle: 101036, DOI: 10.1016/j.jobe.2019.101036
  • 58. Du S.: Mechanical properties and shrinkage characteristics of cement stabilized macadam with asphalt emulsion. Construction and Building Materials, 203, 2019, 408-416, DOI: 10.1016/j.conbuildmat.2019.01.126
  • 59. PN-EN 13286-2:2010 Mieszanki niezwiązane i związane hydraulicznie – Część 2: Metody badań laboratoryjnych gęstości na sucho i zawartości wody – Zagęszczanie metodą Proktora
  • 60. PN-EN 13808:2013-10 Asfalty i lepiszcza asfaltowe – Zasady klasyfikacji kationowych emulsji asfaltowych
  • 61. Zhang Z., Cong C., Xi W., Li S.: Application research on the performances of pavement structure with foamed asphalt cold recycling mixture. Construction and Building Materials, 169, 2018, 396-402, DOI: 10.1016/j.conbuildmat.2018.02.134
  • 62. Gui-Ping H., Wing-Gun W.: Effects of moisture on strength and permanent deformation of foamed asphalt mix incorporating RAP materials. Construction and Building Materials, 22, 1, 2008, 30-40, DOI: 10.1016/j.conbuildmat.2006.06.033
  • 63. Yan J., Ni F., Yang M., Li J.: An experimental study on fatigue properties of emulsion and foam cold recycled mixes. Construction and Building Materials, 24, 11, 2010, 2151-2156, DOI: 10.1016/j.conbuildmat.2010.04.044
  • 64. PN-EN 12697-26:2018-08 Mieszanki mineralno-asfaltowe – Metody badań – Część 26: Sztywność
  • 65. PN-EN 12697-24:2018-08 Mieszanki mineralno-asfaltowe – Metody badań – Część 24: Odporność na zmęczenie
  • 66. EN 12697-44:2019 Bituminous mixtures – Test methods for hot mix asphalt – Part 44: Crack propagation by semi-circular bending test
  • 67. PN-EN 12697-33:2019-03 Mieszanki mineralno-asfaltowe – Metoda badań – Część 33: Przygotowanie próbek zagęszczanych urządzeniem wałującym
  • 68. Iwański M., Buczyński P., Mazurek G.: Ocena właściwości fizycznych, mechanicznych i reologicznych recyklowanej podbudowy z emulsją asfaltową oraz z asfaltem spienionym w aspekcie składu innowacyjnego środka wiążącego w warunkach terenowych – Projekt składu recyklowanej podbudowy z asfaltem spienionym oraz emulsją asfaltową, montaż systemu monitorowania odcinka doświadczalnego. Techmatstrateg. Politechnika Świętokrzyska, Raport 1/4/2019
  • 69. Mazurek G., Buczyński P., Iwański M., Horodecka R.: Influence of a three-component hydraulic binder on the properties of recycled base course with foamed bitumen and bituminous emulsion: a field investigation. Roads and Bridges - Drogi i Mosty, 21, 4, 2022, 309-329, DOI: 10.7409/rabdim.022.018
Uwagi
Article co-edited by Prof. Wojciech Bañkowski and Prof. Jorge Pais, from the series of works under the common title: “Use of RAP in Road Engineering” as part of the Ministry of Education and Science project No. RCN/SP/0569/2021/1. ( Artykuł współredagowany przez dr. hab. inż. Wojciecha Bańkowskiego, prof. IBDiM, oraz dr. inż. Jorge Paisa, prof. Uniwersytetu w Minho, z cyklu prac pod wspólnym tytułem „Wykorzystanie destruktu asfaltowego w budownictwie drogowym” w ramach projektu MEiN Nr RCN/SP/0569/2021/1)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7324d743-a038-409c-bcab-e87815761439
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.