PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bionanomaterials – an emerging field of nanotechnology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The science that involves nano-sized particles have been shown to have a huge impact on a variety of research fields, such as electronics, medicine, engineering, robotics and technology. The involvement of biological agents in nanoscience helped in the origin of bionanotechnology, which is deeply rooted in therapeutic and medical applications. This review provides an initiative to understand the combination of biological molecules and nanoparticles in delivering a great impression in the world of therapeutics. Design/methodology/approach: Conjugation of nanoparticles with the biological molecules makes them more friendly for the living system by increasing biocompatibility and reducing toxicity. Findings: Growing research in this area has revealed the identification and characterization of numerous biological agents of nano-sized that can serve as better carrier systems. They are exploited in the development of advanced nanoparticle-based targeted drug delivery systems. In general, either the combined form or the one in the derived form of nanoparticles from different biological organisms provides a valuable understanding of their specifications and importance in different therapeutic aspects. Research limitations/implications: The combined form of biological molecules and nanoparticles is not yet well understood, and this might provide a baseline for prospects. Originality/value: This review provides an understanding of biologically synthesized and conjugated nanoparticles and their potential as therapeutic norms and highlights their applications, especially in the clinical field.
Rocznik
Strony
33--41
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Chennai, Tamil Nadu, India
autor
  • Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam-603103, Chennai, Tamil Nadu, India
Bibliografia
  • 1. S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine, Molecules 25/1 (2020) 112. DOI: https://doi.org/10.3390/molecules25010112
  • 2. J.E. Hulla, S.C. Sahu, A.W. Hayes, Nanotechnology: History and future, Human and Experimental Toxicology 34/12 (2015) 1318-1321. DOI: https://doi.org/10.1177/0960327115603588
  • 3. S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways, PNAS 105/33 (2008) 11613-11618. DOI: https://doi.org/10.1073/pnas.0801763105
  • 4. M.J. Ernsting, M. Murakami, A. Roy, S.D. Li, Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles, Journal of Controlled Release 172/3 (2013) 782-794. DOI: https://doi.org/10.1016/j.jconrel.2013.09.013
  • 5. M. Chakravarty, A. Vora, Nanotechnology-based antiviral therapeutics, Drug Delivery and Translational Research 11 (2021) 748-787. DOI: https://doi.org/10.1007/s13346-020-00818-0
  • 6. K.R. Singh, V. Nayak, R.P. Singh, Introduction to bionanomaterials: an overview, in: R.P. Singh, K.R.B. Singh (eds), Bionanomaterials Fundamentals and bio¬medical applications, IOP Publishing, Bristol, 2021, 1-21. DOI: https://doi.org/10.1088/978-0-7503-3767-0ch1
  • 7. U. Theuretzbacher, Global antimicrobial resistance in Gram-negative pathogens and clinical need, Current Opinion in Microbiology 39 (2017) 106-112. DOI: https://doi.org/10.1016/j.mib.2017.10.028
  • 8. M. Kumar, A. Curtis, C. Hoskins, Application of nanoparticle technologies in the combat against antimicrobial resistance, Pharmaceutics 10/1 (2018) 11. DOI: https://doi.org/10.3390/pharmaceutics10010011
  • 9. S.S. Chrai, R. Murari, I. Ahmad, Liposomes (a review), part one: manufacturing issues. BioPharm International 14/11 (2001) 10-14.
  • 10. A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S.W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, K. Nejati-Koshki, Liposome: Classification, preparation, and applications, Nanoscale Research Letters 8/1 (2013) 102. DOI: https://doi.org/10.1186/1556-276X-8-102
  • 11. X. Han, K. Xu, O. Tarantula, K. Farsad, Applications of nanoparticles in biomedical imaging, Nanoscale 11/3 (2019) 799-819. DOI: https://doi.org/10.1039/c8nr07769j
  • 12. J. Kim, N. Lee, T. Hyeon, Recent development of nanoparticles for molecular imaging, Philosophical Transactions of the Royal Society A 375  (2017) 20170022. DOI: https://doi.org/10.1098/rsta.2017.0022
  • 13. V. Cuccurullo, G.D. Di Stasio, G. Mazzarella, G.L. Cascini, Microvascular Invasion in HCC: The Molecular Imaging Perspective. Contrast Media and Molecular Imaging 2018 (2018) 9487938. DOI: https://doi.org/10.1155/2018/9487938
  • 14. D.I. Andersson, D. Hughes, J.Z. Kubicek-Sutherland, Mechanisms and consequences of bacterial resistance to antimicrobial peptides, Drug Resistance Updates 26 (2016) 43-57. DOI: https://doi.org/10.1016/j.drup.2016.04.002
  • 15. D.M. Lin, B. Koskella, H.C. Lin, Phage therapy: An alternative to antibiotics in the age of multi-drug resistance, World Journal of Gastrointestinal Pharmacology and Therapeutics 8/3 (2017) 162-173. DOI: https://doi.org/10.4292/wjgpt.v8.i3.162
  • 16. L.B. Truong, D. Medina-Cruz, E. Mostafavi, N. Rabiee, Selenium nanomaterials to combat antimicrobial resistance, Molecules 26/12 (2021) 3611. DOI: https://doi.org/10.3390/molecules26123611
  • 17. T. Huang, J.A. Holden, D.E. Heath, N.M. O’Brien-Simpson, A.J. O’Connor, Engineering highly effective antimicrobial selenium nanoparticles through control of particle size, Nanoscale 11/31 (2019) 14937-14951. DOI: https://doi.org/10.1039/c9nr04424h
  • 18. D. Kim, Y.Y. Jeong, S. Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano 4/7 (2010) 3689-3696. DOI: https://doi.org/10.1021/nn901877h
  • 19. E.S. Papazoglou, A. Parthasarathy, BioNanotechnology, Springer, Cham, 2007. DOI: https://doi.org/10.2200/S00051ED1V01Y200610BME007
  • 20. J.F. Honek, Bionanotechnology and bionanomaterials: John Honek explains the good things that can come in very small packages, BMC Biochemistry 14/1 (2013) 29. DOI: https://doi.org/10.1186/1471-2091-14-29
  • 21. R.K. Mishra, S.K. Ha, K. Verma, S.K. Tiwari, Recent progress in selected bio-nano materials and their engineering applications: An overview, Journal of Science: Advanced Materials and Devices 3/3 (2018) 263-288. DOI: https://doi.org/10.1016/j.jsamd.2018.05.003
  • 22. K. Sahayaraj, Bionanomaterials: Synthesis and applications, Proceedings of the 1st National Seminar on New Materials Research and Nanotechnology “NSNMRN 2012”, TamilNadu, India, 2012, 24-29.
  • 23. Chitosan - Uses, Side Effects, and More. Available from: https://www.webmd.com/vitamins/ai/ingredientmono-625/chitosanv
  • 24. W. Tiyaboonchai, Chitosan nanoparticles: A promising system for drug delivery, Naresuan University Journal 11/3 (2003) 51-66.
  • 25. U. Garg, S. Chauhan, U. Nagaich, N. Jain, Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting, Advanced Pharmaceutical Bulletin 9/2 (2019) 195-204. DOI: https://doi.org/10.15171/apb.2019.023
  • 26. N. Poth, V. Seiffart, G. Gross, H. Menzel, W. Dempwolf, Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2, Biomolecules 5/1 (2015) 3-19. DOI: https://doi.org/10.3390/biom5010003
  • 27. A. del Carpio-Perochena, C.M. Bramante, M.A.H. Duarte, M.R. de Moura, F.A. Aouada, A. Kishen, Chelating and antibacterial properties of chitosan nanoparticles on dentin, Restorative Dentistry and Endodontics 40/3 (2015) 195-201. DOI: https://doi.org/10.5395/rde.2015.40.3.195
  • 28. K. Divya, M.S. Jisha, Chitosan nanoparticles preparation and applications, Environmental Chemistry Letters 16/1 (2018) 101-112. DOI: https://doi.org/10.1007/s10311-017-0670-y
  • 29. M. Yanat, K. Schroën, Preparation methods and appli¬cations of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging, Reactive and Functional Polymers 161 (2021) 104849. DOI: https://doi.org/10.1016/j.reactfunctpolym.2021.104849
  • 30. D. Schurmann, A. Dormann, T. Grunewald, B. Ruf, Successful treatment of AIDS-related pulmonary Kaposi’s sarcoma with liposomal daunorubicin, European Respiratory Journal 7 (1994) 824-825. DOI: https://doi.org/10.1183/09031936.94.07040824
  • 31. A. Fariq, T. Khan, A. Yasmin, Microbial synthesis of nanoparticles and their potential applications in biomedicine, Journal of Applied Biomedicine 15/4 (2017) 241-248. DOI: https://doi.org/10.1016/j.jab.2017.03.004
  • 32. J. Jeevanandam, Y.S. Chan, M.K. Danquah, Biosynthesis of metal and metal oxide nanoparticles, ChemBioEng Reviews 3/2 (2016) 55-67. DOI: https://doi.org/10.1002/cben.201500018
  • 33. S. Sundar, J. Kundu, S.C. Kundu, Biopolymeric nanoparticles, Science and Technology of Advanced Materials 11/1 (2010) 014104. DOI: https://doi.org/10.1088/1468-6996/11/1/014104
  • 34. K. Sahayaraj, S. Rajesh, Bionanoparticles: Synthesis and antimicrobial applications, in: A. Méndez-Vilas (ed), Science against microbial pathogens: communicating current research and technological advances, Formatex, Badajoz, Spain, 2011, 228-244.
  • 35. J. Du, H. Singh, T.H. Yi, Antibacterial, anti-biofilm and anti-cancer potentials of green synthesized silver nanoparticles using benzoin gum (Styrax benzoin) extract, Bioprocess and Biosystems Engineering 39/12 (2016) 1923-1931. DOI: https://doi.org/10.1007/s00449-016-1666-x
  • 36. U.S.U. Suganya, K. Govindaraju, G.G. Kumar, D. Prabhu, C. Arulvasu, S.S. Dhas, V. Karthick, N. Changmai, Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7), Applied Surface Science 371 (2016) 415-424. DOI: https://doi.org/10.1016/j.apsusc.2016.03.004
  • 37. R. Heydari, M. Rashidipour, Green synthesis of silver nanoparticles using extract of oak Fruit hull (Jaft): Synthesis and in vitro cytotoxic effect on MCF-7 cells, International Journal of Breast Cancer 2015 (2015) 846743. DOI: https://doi.org/10.1155/2015/846743
  • 38. W. Cai, J.R. Peck, D.W. Van Der Weide, R.J. Hamers, Direct electrical detection of hybridization at DNA-modified silicon surfaces, Biosensors and Bioelectronics 19/9 (2004) 1013-1019. DOI: https://doi.org/10.1016/j.bios.2003.09.009
  • 39. M. Holzinger, A. Le Goff, S. Cosnier, Nanomaterials for biosensing applications: a review, Frontiers in Chemistry 2 (2014) 63. DOI: https://doi.org/10.3389/fchem.2014.00063
  • 40. H. Su, S. Li, Y. Jin, Z. Xian, D. Yang, W. Zhou, F. Mangaran, F. Leung, G. Sithamparanathan, K. Kerman, Nanomaterial-based biosensors for biological detections, Advanced Health Care Technologies 3 (2017) 19-29. DOI: https://doi.org/10.2147/AHCT.S94025
  • 41. H. Barabadi, S. Honary, Biofabrication of gold and silver nanoparticles for pharmaceutical applications, Pharmaceutical and Biomedical Research 2/1 (2016) 1-7. DOI: https://doi.org/10.18869/acadpub.pbr.2.1.1
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7323a8e6-b1e9-4362-a5fc-40f10ecb04c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.