Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zastosowanie biosurfaktantów do wymywania metali ciężkich z immobilizowanego osadu czynnego
Języki publikacji
Abstrakty
This study was undertaken to determine the effectiveness of biosurfactants - saponin, tannin and rhamnolipids JBR 515 and 425, for the removal of cadmium, zinc and copper from activated sludge immobilized in 1.5% sodium alginate with 0.5% polyvinyl alcohol. We also established the impact of pH value on biosorbent regeneration with the analyzed biosurfactants and determined the critical micelle concentration (CMC) in solutions containing the biosorbent and biosurfactant and in exact samples with heavy metals. Saponin exhibited the highest effectiveness of metals leaching at pH 1-5, and rhamnosides at pH 5-6. In addition, the study demonstrated a significant effect of the ratio of biosorbent mass to washing agent volume (m/V) on the effectiveness of metals leaching. Of the biosurfactants analyzed, saponin was ca. 100% effective in leaching zinc and copper. The effectiveness of the other biosurfactants was lower and depended on the metal being leached.
W pracy podjęto badania nad określeniem efektywności wykorzystania biosurfaktantów - saponiny, taniny oraz ramnolipidów JBR 515 i JBR 425 do wymywania kadmu, cynku i miedzi z osadu czynnego immobilizowanego w alginianie sodu 1,5% z alkoholem poliwinylowym 0,5%. Przeprowadzone badania pozwoliły określić wpływ odczynu na regenerację biosorbentu za pomocą testowanych biosurfaktantów, wyznaczyć krytyczne stężenie micelarne (CMC) w roztworach zawierających biosorbent i biosurfaktant oraz w próbach właściwych z metalami ciężkimi. Saponina charakteryzowała się najwyższą efektywnością wymywania metali przy pH 1-5, a ramnolipidy przy pH 5-6. Ponadto badania wykazały istotny wpływ stosunku masy biosorbentu do objętości eluatu (m/V) na skuteczność wymywania metali. Spośród analizowanych biosurfaktantów saponina wykazywała około 100% efektywność usuwania z biosorbentu cynku i miedzi. Skuteczność innych biosurfaktantów była niższa i zależała od rodzaju metalu.
Czasopismo
Rocznik
Tom
Strony
43--52
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Poland Department of Environmental Sciences
autor
- University of Warmia and Mazury in Olsztyn, Poland Department of Environmental Sciences
autor
- University of Warmia and Mazury in Olsztyn, Poland Department of Environmental Sciences
Bibliografia
- [1] Asci,Y., Nurbas, M. & Sag Acikel, Y. (2007). Sorption of Cd (II) onto kaolin as a soil component and desorption of Cd (II) from kaolin using Rhamnolipid biosurfactant, Journal of Hazardous Material, B139, pp. 50 -56.
- [2] Bajpai, D. & Tyagi, V.K. (2007). Laundry detergents: an overview, Journal of Oleo Science, 56, pp. 327-340.
- [3] Bate-Smith, E.C. & Swain, T. (1962). Comparative Biochemistry, Eds. Mason, H. S., Florkin, M., 3, 764, Academic Press, New York 1962.
- [4] Bognolo, G. (1999). Biosurfactants as emulsifying agents for hydrocarbons, Colloids and Surfaces, 152, pp. 41-52.
- [5] Chen, C., Yang, C. & Chen, A. (2010). Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin, Journal of Environmental Management, 92, pp. 796-802.
- [6] Chen, W-J., Hsiao, L.C. & Chen, K.K-Y. (2008). Metal desorption from copper(II)/nickel(II)-spiked kaolin as a soil component using plant-derived saponin biosurfactant, Process Biochemistry, 43, pp. 488-498.
- [7] Chu, W. & Chan, K.H. (2003). The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics, The Science of the Total Environment, 307, pp. 83-92.
- [8] Dey, P.M. & Harborne, J.B. (1997). Methods in plant Biochemistry, Academic Press, pp. 436-466.
- [9] Doong, R., Wu, Y.W. & Lei, W. (1998). Surfactant enhanced remediation of cadmium contaminated soils, Water Science Technology, 37, pp. 65-71.
- [10] Halvorson, J.J., Gonzalez, J.M. & Hagerman, A.E. (2011). Repeated applications of tannins and related phenolic compounds are retained by soil and affect cation exchange capacity, Soil Biology and Biochemistry, 43, pp. 1139-1147.
- [11] Helvaci, S.S., Peker, S. & Ozdemir, G. (2004). Effect of electrolytes on surface behavior of rhamnolipids R1 and R2, Colloid and Surfaces B, 35, pp. 225-233.
- [12] Hong, K.J., Tokunaga, S., Ishigami, Y. & Kajiuchi, T. (2000). Extraction of heavy metals from MSW incinerator fly ash using saponins, Chemosphere 41, pp. 345-352.
- [13] Hong, K.-J., Tokunaga, S. & Kajiuchi, T. (2002). Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils, Chemosphere, 49, pp. 379-387.
- [14] Karwowska, E., Łebkowska, M., Pielach, L. & Apolinarski, M. (2009). Zinc Removal from Solutions and Wastewater Using Immobilized and Non-immobilized Aspergillus niger Biomass, Rocznik Ochrona Środowiska, 11, pp. 923-933. (in Polish)
- [15] Karwowska, E., Łebkowska, M., Tabernacka, A. & Andrzejewska, D. (2011). Elimination of heavy metals from fly ash using leaching solutions containing sulphur-oxidizing bacteria or bactera producing biological surfactants, Rocznik Ochrona Środowiska, 13, pp. 1133-1156. (in Polish)
- [16] Kipigroch, K., Janosz-Rajczyk, M. & Wykrota, L. (2012). Biosorption of heavy metals with the use of mixed algal population, Archives of Environmental Protection, 38(2), pp. 3-10.
- [17] Kuczajowska-Zadrożna, M. Klimiuk, E. & Wojnowska-Baryła, I. (2004). Cyclical cadmium adsorption and desorption by activated sludge immobilized on alginate carriers, Polish Journal of Environmental Studies, 13(2), pp. 161-169.
- [18] Lang, S. & Wullbrandt, D. (1999). Rhamnose lipids - biosynthesis, microbial production and application potential, Applied Microbiology and Biotechnology, 51, pp. 22-32.
- [19] Lezcano, J.M. , González, F., Ballester, A., Blázquez, M.L., Muñoz, J.A. & García-Balboa, C. (2011). Sorption and desorption of Cd, Cu and Pb using biomass from an eutrophized habitat in monometallic and bimetallic systems, Journal of Environmental Management, 92, pp. 2666-2674.
- [20] Mulligan, C.N. & Gibbs, B.F. (1993). Factors influencing the economics of biosurfactants, In: Kosaric, N. (Ed.). Biosurfactants, Production, Properties, Applications, pp. 329-371, New York 1993
- [21] Mulligan, C.N. & Wang, S. (2004). Remediation of a heavy metal contaminated soil by a rhamnolipid foam, In: Yangt, R.N., Thomas, H.R. (Eds.), Geoenvironmental Engineering. Integrated Management of groundwater and contaminated land, Thomas Telford Pub., pp. 544-551, London 2004.
- [22] Nguen, T.T., Yousself, N.H., McInerney, M.J. & Sabatini, D.A. (2008). Rhamnolipid biosurfactant mixtures for environmental remediation, Water Research, 42, pp. 1735-1743.
- [23] Njikam, E. & Schiewer, S. (2012). Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration, Journal of Hazardous Materials, 213-214, pp. 242-248.
- [24] Ochoa-Loza, F.J., Noordman, W.H., Jannsen, B.J, Brusseau, M.L. & Maier, M.R. (2007). Effect of clays, metal oxides and organic matters on rhamnolipid biosurfactant sorption by soil, Chemosphere, 66, pp. 1634-1642.
- [25] Ozdemir, G. & Yapar, S. (2004). Adsorption and desorption behavior of copper ions on Na-montmorillonite: Effect of rhamnolipid and pH, Journal of Hazardous Materials, 166, pp. 1307-1313.
- [26] Patist, A., Bhagwat, S.S., Penfield, K.W., Aikens, P. & Shah, D.O. (2000). On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants, Journal of Surfactants and Detergents, 3, pp. 53-58.
- [27] Prica, M., Dalmacija, M., Dalmacija, B., Pestic, V., Krcmar, D., Becelic, M. & Milosevic, R. (2012). Immobilization of cadmium from contaminated sediment using cardboard mill sludge, Archives of Environmental Protection, 38(4), pp. 109-118.
- [28] Ramakirshana, K., Selvi, S.R. & Shubha, R. (2006). Tannin and it’s analytical techniques, Indian Chemical Engineering Section A, 48, pp. 88-93.
- [29] Reed, J.D. (1995). Nutritional toxicology of tannins and related polyphenols in forage legumes, Journal Animal Science, 73, pp. 1516-1528.
- [30] Rodríguez-Cruz, M.S., Sanchez-Martin, M.J. & Sanchez-Camazano, M. (2005). A comparative study of adsorption of anionic and a non-ionic surfactant by soils based on physicochemical and mineralogical properties of soils, Chemosphere, 61, pp. 56-64.
- [31] Rosik-Dulewska, Cz. & Mikszta, M. (2001). Dynamics of heavy metals leaching from soils with sewage sludge addition, Archives of Environmental Protection, 27(1), pp. 87-99.
- [32] Sahu, N.P. & Achari, B. (2001). Advances in Structural Determination of Saponins and Terpenoid Glycosides, Current Organic Chemistry, 5(3), pp. 315-334.
- [33] Schippers, C., Geßner, K., Muller, T. & Scheper, T. (2000). Microbial degradation of phenanthrene by addition of a sophorolipid mixture, Journal of Biotechnology, 83, pp. 189-198.
- [34] Schweitzer, J.A., Madritch, M.D., Bailey, J.K., LeRoy, C.J., Fischer, D.G., Rehill, B.J., Lindroth, R.J., Hagerman, A.E., Wooley, S.C. & Hart, S.C. (2008). From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system, Ecosystems, 11, pp. 1005-1020.
- [35] Tharayil, N., Suseela, V., Triebwasser, D.J., Preston, C.M., Gerard, P.D. & Dukes, J.S. (2011). Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: climatic stress-induced tannins are more reactive, New Phytologist, 191, pp. 132-145.
- [36] Tsekova, K., Todorova, D., Dencheva, V. & Ganeva, S. (2010). Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger, Bioresource Technology, 101, pp. 1727-1731.
- [37] Urum, K. & Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing, Chemosphere, 57, pp. 1139-1150.
- [38] Wasan, B.T. & Nikolov, A.D. (2003).Spreading of nanofluids on solids, Nature, 423, pp. 156-159.
- [39] Watanabe, M., Sumida, N., Yanai, K. & Murakami, T. (2004). A Novel Saponin Hydrolase from Neocosmospora vasinfecta var. vasinfecta, Applied and Environmental Microbiology, 70 (2), pp. 865-872
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73203a93-462a-4175-8ac4-cc33480a0cfb