PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a source code to analyze the effect of Reynolds number on a square lid driven cavity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical simulations of two-dimensional, steady, incompressible lid driven flow in a square cavity were investigated in this work. A commercial finite volume package of ANSYS-FLUENT was used to analyze and visualize the nature of the flow inside the cavity at different Reynolds Numbers. In addition, a MATLAB code was developed and validated by comparing the results with the reference values from literature. Staggered grid was employed in the discretization of the cavity to avoid checkerboard pressure while developing the code. The governing equations were discretized in terms of velocity and pressure fields. The artificial compressibility method was used to de-couple the pressure and velocity terms in the governing equations. A 129×129 grid system was used in both cases. The effects of Reynolds number (100≤ Re ≤ 1000) on the flow characteristics were illustrated through an analysis of stream function, velocity vector, pressure co-efficient and velocity contours. The thinning of the wall boundary layers with an increase in the Reynolds number is evident from the u and v velocity profiles along the vertical and horizontal lines at the geometric center, although the rate of this thinning is very slow for Re> 5000.
Rocznik
Strony
147--154
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Khulna University of Engineering &Technology, Focus B/-233, Sonar Bangla, Baluchor, Sylhet-3100, Bangladesh
  • Department of Mechanical Engineering, Khulna University of Engineering &Technology, Bangladesh
autor
  • Department of Mechanical Engineering, Khulna University of Engineering &Technology, Bangladesh
Bibliografia
  • 1. Ghia U., Ghia K N., Shin C T. (1982). High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of ComputationalPhysics,48, pp. 387-411.
  • 2. Prasad A K., Koseff J R. (1989). Reynolds Number and Endwall Effects on a Lid Driven Cavity Flow. Physics of Fluids, Vol 1, Issue 2.
  • 3. Deville M., Le T H., Morchoisne Y. (1992). Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows. NNFM, Vol. 36.
  • 4. Hou S., Zou Q., Chen S., Doolen G., Cogley AC. (1995). Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics,118:329–347.
  • 5. Barragy E., Carey GF. (1997). Stream Function-Vorticity Driven Cavity Solutions Using P Finite Elements. Computers and Fluids, Vol. 26, pp. 453–468.
  • 6. Botella O., Peyret R. (1998). Benchmark Specteal Result on the Lid Driven Cavity Flow. Computers & Fluids, Vol. 27, No. 4, pp. 421-433.
  • 7. Schreiber R, Keller HB. (1983). Driven cavity flows by efficient numerical techniques. Journal of ComputationalPhysics,49:310–333.
  • 8. Chiang T.P., Sheu W.H. and Robert R. H. (1998). Effect of Reynolds Number on the Eddy Structure in a Lid Driven Cavity. International Journal for Numerical Method in Fluids, VOL. 26, 557–579.
  • 9. Ercan Erturk. (2009). Discussions On Driven Cavity Flow, Int. J. Numer. Meth. Fluids, Vol 60: pp 275-294.
  • 10. Bruneau Ch. H., Saad M. (2006). The 2D lid-driven cavity problem revisited. Computers & Fluids, 35 (3).
  • 11. Migeon C., Pineau G. and Texier A. (2003). Three dimensionality development inside standard parallel pipe lid-driven cavities at Re = 1000. J. Fluids and Struc, 17 (1): 717–738.
  • 12. Hans Petter Langtangen, Kent-Andre Mardal, Ragnar Winther, Numerical Methods for Incompressible Viscous Flow, University of Oslo.
  • 13. Alexandre Joel Chorin, (1997). A Numerical Method for Solving Incompressible Viscous Flow Problem. Journal of Computational Physics, 135, pp. 118-125.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-731ba8a8-8a39-4949-97a2-af4b12e809b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.