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1. Introduction  
 

Our society is heavily dependent on many complex 
systems, technological, natural and even social that 
are hierarchies of networks of components (also 
called nodes, vertices or elements) interacting 
through links (also called edges, arcs or 
connections). Identifying and quantifying the 
vulnerabilities of such systems is crucial for 
designing the adequate protections, mitigation and 
emergency actions against their failures [3], [10], 
[13]. 
The apparent ubiquity of networks leads to a 
fascinating set of problems common to biological, 
ecological, technological and social complex 
systems, regarding how the underlying network 
topology influences the system behavior and its 
characteristics of stability and robustness to faults 
and attacks. 
Given the complexity of these highly distributed and 
interconnected infrastructures, performing a 
systematic analysis of their vulnerability and 

robustness to failure becomes difficult if one resorts 
only to traditional probabilistic safety assessment 
(PSA) methods, so that new complementary 
approaches of network analysis are emerging for 
characterizing the network resistance to failure and 
identifying its most vulnerable elements [2], [5], [7], 
[8], [9], [15]. 
A relevant outcome of the analysis of the network 
structure is the identification of the most important 
groups of elements of different sizes in the network. 
Various measures of importance can be defined, 
which capture different structural aspects of the 
interconnection paths among network nodes. 
In this paper, two applications of multi-objective 
genetic algorithms (MOGAs) are reported with 
regards to the analysis and optimization of electrical 
transmission networks. In the first case study,  the 
electrical transmission network system of the IEEE 
(Institute of Electrical and Electronic Engineers) 14 
BUS (a portion of the American Electric Power 
System) is considered [12] and a MOGA is used to 
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The results of two applications of multi-objective genetic algorithms to the analysis and optimization of 
electrical transmission networks are reported to show the potential of these combinational optimization 
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improving the transmission reliability, while maintaining the investment cost limited. 
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solve an optimization problem in which the decision 
variables identify groups of components and the 
objectives are to maximize the importance of the 
groups while minimizing their dimension. This 
formulation guides the MOGA search towards the 
identification of the most important single 
components, couples of components, triplets, and so 
forth in the topological structure of the network. 
In the second case study, a MOGA is developed for 
identifying strategies of expansion of an electrical 
network in terms of new lines of connection to add 
for improving the reliability of its transmission 
service, while maintaining limited the investment 
cost. The typical large size of electrical networks 
offers a combinatorial number of potential solutions 
of new connections, so that classical optimization 
techniques become inapplicable. For this reason, we 
resorted to a MOGA driven by the objectives of 
maximizing the network global reliability efficiency 
[16] and minimizing the cost of the added 
connections. To realistically restrict the search space 
to small numbers of new connections the so-called 
guided multi-objective genetic algorithm (G-MOGA) 
has been applied. In this approach, the search is 
based on the guided domination principle which 
allows to change the shape of the dominance region 
specifying maximal and minimal trade-offs between 
the different objectives so as to efficiently guide the 
MOGA towards Pareto-optimal solutions within 
these boundaries [17]. The performance of this 
search approach is tested on a case study based on 
the IEEE (Institute of Electrical and Electronic 
Engineers) RTS (Reliability Test System) 96 [1]. 
The paper is organized as follows. Section 2 presents 
the group closeness centrality measure which can be 
used to quantify the importance of groups of nodes. 
The concept of network global reliability efficiency 
is also presented. A short introduction to the basic 
concepts behind the optimization procedure by 
Multi-Objective Genetic Algorithms is given in 
Section 3. In Section 4 and Section 5, the case 
studies regarding the IEEE 14 BUS network system 
and IEEE RTS 96 are presented and solved by 
MOGA. Conclusions on the outcomes of the analysis 
are eventually drawn in Section 6.  
 
2. Topological group closeness centrality and 
global reliability efficiency 
 

Mathematically, the topological structure of a 
network can be represented as a graph ( , )G N K  with 
N nodes  connected by K edges. The connections are 
defined in an N N×  adjacency matrix {aij} whose 
entries are 1 if there is an edge joining node i  to 
node j  and 0 otherwise. 

The group closeness centrality [4], ( ),CC g  is based 
on the idea that a node can quickly interact with all 
other nodes if it is easy accessible (close to) all 
others. If ijd  is the topological shortest path length 

between nodes i  and j  (i.e., the minimum number 
of arcs on a path connecting them), the closeness of a 
group g  of gN  nodes is the sum of the distances 

from the members of the group to all vertices outside 
the group: 
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This measure is normalized by dividing the distance 
score into the number of non-group members, with 
the result that larger numbers indicate greater 
centrality. 
When the group consists of a single node, the group 
closeness centrality is the same as the individual 
node closeness centrality [5], [11], [14]. 
To capture the failure behavior of the network, the 
reliability of its connecting edges is included in the 
framework of analysis by means of the formalism of 
weighted networks, the weight ijw

 
associated to the 

edge between the pair of nodes i  and j  being its 
reliability: 
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where ijλ  is the failure rate of edge ij  linking nodes 

i  and j  and T  is a reference time ( 1T =  year, in 
this work).  
On the basis of the adjacency and reliability matrices 

{ }ija  and { }ijp , the matrix of the most reliable path 

lengths { }ijrd  can be computed [16].  

The group reliability closeness centrality can then be 
computed as in eq. (1), with ijrd replacing .ijd  

The global reliability efficiency [ ]RE G  of the graph 
G  can also be defined as [16]: 
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3. Multi-objective genetic algorithms 

Genetic Algorithms (GAs) are optimization methods 
aiming at finding the global optimum of a set of real 
objective functions, { }( ) ,F f≡ ⋅  of one or more 
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decision variables, { }U u≡ , possibly subject to 

various linear or non linear constraints. The 
terminology adopted in GAs contains many terms 
borrowed from biology, suitably redefined to fit the 
algorithmic context. Thus, GAs operate on a set of 
(artificial) chromosomes, which are strings of 
numbers, generally sequences of binary digits (bits) 0 
and 1, coding the values of the decision variables. 
The values of the objective functions in 
correspondence of the values of the decision 
variables of a chromosome, give the fitness of that 
chromosome. The GA search is performed by 
constructing a sequence of populations of 
chromosomes, the individuals of each population 
being the children of those of the previous population 
and the parents of those of the successive population. 
The initial population is generated by randomly 
sampling the bits of all the strings; at each step in the 
search sequence, the new population is obtained by 
probabilistically manipulating the strings of the old 
population with fitness-improving rules which mimic 
genetic evolution. The search sequence continues 
until a pre-established optimality termination 
criterion is reached. 
Typically, several possibly conflicting objective 
functions ( ),if ⋅  i = 1, 2,…, nf , must be evaluated in 

correspondence of each decision variable vector U  
in the search space. In this case, the GA search 
proceeds by comparing the solutions in terms of the 
concepts of Pareto optimality and dominance [6]: 
with reference to a maximization problem proposed  
solution aU  is said to dominate bU  if  

  { }1,2,..., , ( ) ( )f i a i bi n f U f U∀ ∈ ≥  

and 

   { }1,2,..., , ( ) ( ).f j a j bj n f U f U∃ ∈ >  

(4) 

The decision variable vectors which are not 
dominated by any other of a given set are called 
nondominated with respect to this set; the decision 
variable vectors that are nondominated within the 
entire search space are said to be Pareto optimal and 
constitute the so called Pareto optimal front, which 
is the object of the optimization. 
 
4. Case study 1 
 

4.1 IEEE 14 BUS electrical transmission 
network 
 

The topological structure of the electrical 
transmission network system of the IEEE (Institute 
of Electrical and Electronic Engineers) 14 BUS (a 
portion of the American Electric Power System) is 

considered for the analysis of the importance of 
groups of components, measured in terms of 
reliability closeness centrality. The system 
considered represents a portion of the American 
Electric Power System and consists of 14 bus 
locations connected by 20  lines and transformers. 
The topology of the system can be represented by the 
graph G(14,20) of Figure 1. 
 

 
 
Figure 1. Graph representation of the IEEE 14 BUS 
transmission network  
 
4.2 Identification of most central groups of 
nodes by MOGA 
 

A MOGA has been implemented to identify the most 
reliability-central groups of nodes of different sizes 
in the network of Figure 1, considering the group 
reliability closeness centrality measure and the 
dimension of the group as objective functions. Table 
1 summarizes the details of the implementation of 
the MOGA operators described in Section 3 along 
with a number of parameters that control the 
operation of the genetic algorithm such as the 
population size (i.e., the size of the evolving set of 
candidate solutions) and the number of generations 
(i.e., the duration of the evolution process). The 
optimization runs were performed starting from an 
initial random population.  
Figure 2 shows the results obtained on the 
importance of the group in terms of reliability 
closeness centrality. In the Figure, the values of the 
objective functions in correspondence of all the 
nondominated groups of nodes contained in the 
MOGA archive at convergence are shown to identify 
the two-dimensional Pareto-optimal surface (circles). 
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Table 1. MOGA parameters and rules 
 

Number of chromosomes 200 
Number of generations 200 
Selection Fit-Fit 
Replacement Children-parents 
Mutation probability 0.001 
Crossover probability 1 
Number of generations 
without elitist selection 

15 

Fraction of parents chosen 
with elitist selection 

0.25 

 
The results are compared for validation with those 
obtained by exhaustive computation of all groups of 
nodes (i.e., the computation of the group reliability 
closeness centrality measure for all the possible 
combinations of n  out of N nodes; due to the fact 
that the number of groups obtained is 2N , its 
implementation is feasible here thanks to the small 
size of the network but would require impractical 
computational resources for large networks). 
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Figure 2. Results of the multi-objective search of the 
most central groups of nodes in terms of reliability 
closeness centrality 
 
Actually, different groups of equal size can have the 
same centrality measure value: Table 2 reports all the 
nondominated solutions contained in the archive, 
identified by the MOGA. For the groups composed 
of one to three and five nodes, there is only one 
combination that maximizes the group reliability 
closeness centrality measure; on the other hand, there 
is more than one solution for the groups with sizes 
four and six to ten; this allows choosing the solution 
most suitable for a given purpose, e.g. system 
upgrade by components renewal, replacement, or 

redundancy allocation in order to use effectively the 
budget available. 
In the present case, the smallest group with maximal 
reliability closeness is of size 10 and there are 2 of 
these. The group {1, 2, 3, 5, 7, 10, 11, 12, 13, 14} is 
particularly interesting because it does not contain 
the highly central node {4} and contains the node 
{1} that have the smallest individual reliability 
closeness centrality measure, as it can be seen in 
Table 3.  
 
Table 2. Pareto optimal results of the multi-objective 
search for reliability closeness centrality groups  
 

Group 
reliability 
closeness 
centrality 

Group 
Size 

Components 

0.303 1 4 
0.47 2 (4, 6), (6, 9) 
0.562 3 (2, 6, 9) 
0.602 4 (1, 2, 6, 9), (1, 3, 6, 9), (2, 3, 6, 9)  
0.659 5 (1, 2, 3, 6, 9) 
0.688 6 (1, 2, 3, 6, 7, 9), (1, 2, 3, 6, 8, 9) 
0.761 7 (1, 2, 3, 5, 7, 10, 13), (1, 2, 3, 5, 7, 

11, 13), (1, 2, 3, 6, 7, 10, 13), (1, 2, 
3, 6, 7, 10, 14), (1, 2, 3, 6, 7, 11, 

13), (1, 2, 3, 6, 7, 11, 14) 
0.802 8 (1, 2, 3, 5, 7, 10, 11, 13), (1, 2, 3, 5, 

7, 10, 12, 13), (1, 2, 3, 5, 7, 11, 12, 
14), (1, 2, 3, 6, 7, 10, 11, 13), (1, 2, 

3, 6, 7, 10, 12, 13), (1, 2, 3, 6, 7, 
11, 12, 14) … 

0.868 9 (1, 2, 3, 5, 7, 10, 11, 12, 13), (1, 2, 
3, 5, 7, 10, 11, 13, 14), (1, 2, 3, 6, 

7, 11, 12, 13, 14) … 
0.99 10 (1, 2, 3, 5, 7, 10, 11, 12, 13, 14),  

(1, 2, 3, 6, 7, 10, 11, 12, 13, 14) 
 
Table 3. Individual reliability closeness centrality 
 

Node Reliability closeness centrality 
4 0.3031 
9 0.2998 
5 0.2835 
7 0.2742 
6 0.2716 
14 0.253 
10 0.2448 
13 0.2448 
11 0.2371 
2 0.2272 
8 0.2184 
12 0.2081 
3 0.1793 
1 0.1723 
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To gain an engineering feeling of the impact on the 
network transmission performance resulting from the 
failure of the nodes of a group of a given reliability 
closeness centrality value, the relative global 
reliability efficiency variation of the network is 
reported in Figure 3. The relative variation of the 
global reliability efficiency due to the removal of a 
group of nodes is computed as the difference 
between the values of the global reliability efficiency 
(eq. (3)) of the network with all the nodes of the 
group (and all the incident arcs) removed and of the 
original network with no nodes removed, normalized 
to the latter. 
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Figure 3. Relative variation of the global reliability 
efficiency as a function of group closeness centrality 
measure 

 
The results show that there is a strong relation 
between the size of the groups removed and the 
efficiency of the network and that the most 
reliability-close central groups (i.e., those in the 
Pareto front) are indeed the most important also from 
the point of view of the negative impact on the 
network global reliability efficiency, when they fail. 
 
5. Case study 2 
 

5.1 IEEE RTS 96 electrical transmission 
network 
 

The transmission network system IEEE RTS 96 is 
considered (Figure 4) [1]. The network consists of 
24 bus locations (numbered in bold in the Figure) 
connected by 34 lines and transformers. The 
transmission lines operate at two different voltage 
levels, 138 kV and 230 kV. The 230 kV system is the 
top part of Figure 4, with 230/138 kV tie stations at 
Buses 11, 12 and 24.  
 

 
 
Figure 4. IEEE RTS 96 transmission network. 

 
Figure 5 gives the representation of the graph 
G(24,34) of the transmission network; the 
corresponding 24 24×  adjacency matrix {aij} has 
entry equal to 1 if there is a line or transformer 
between bus locations i  and j  and 0  otherwise. 
 

 
 
Figure 5.  The IEEE RTS 96 graph representation 

 
5.2 Optimal network expansion by MOGA 

A MOGA has been constructed for identifying the 
best improvements in the connection of the network, 
aimed at increasing its global reliability efficiency in 
transmission at acceptable costs. The improvements 
are obtained by addition of new lines between nodes 
with no direct connection in the original network. 
Given the lack of geographical information on the 
nodes locations, for simplicity and with no loss of 
generality, three typologies of lines have been 
arbitrarily chosen as the minimum, the mean and the 
maximum values of the failure rates of the 
transmission lines taken from [1]:  
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The addition of a new line requires an investment 
cost assumed inversely proportional to the failure 
rate. The network cost can be then defined as: 
 

   ( )
, ,

[ ] 1 / ij
i j N i j

C G λ
∈ ≠

= ∑     (5) 

 
The reliability cost of the original IEEE RTS 96 is 

[ ] 332.0120C G =  in arbitrary monetary units and the 

reliability efficiency is [ ] 0.2992RE G = , which is a 

relatively high value representative of a globally 
reliable network.  
The network global reliability efficiency and cost are 
adopted as objective functions in the MOGA 
optimization of the network improved structure. 
From the algorithmic point of view, a proposal of 
improvement amounts to changing from 0 to 1 the 
values of the elements in the adjacency matrix 
corresponding to the added connections. The only 
physical restriction for adding direct new 
connections is that the connected nodes must be at 
the same voltage level (138 or 230 kV), otherwise 
the addition of a transformer would also be needed. 
From the genetic algorithm point of view, the 
generation of proposals of network improvements 
can be achieved by manipulating a population of 
chromosomes, each one with a number of bits equal 
to 214 which is double the number of zeros (i.e., the 
number of missing direct connections ij ) in the upper 
triangular half of the symmetric adjacency matrix 
{ aij}. The bits are dedicated to each missing direct 
connection ij  so as to code the three different 
available types of lines with failure rates λ1, λ2 and λ3: 
in other words, the bit-string (00) is used to code the 
absence of connection, (01) connection line with a 
λ1-type line, (10) connection with a λ2-type line and 
(11) connection with a λ3-type line. The initial 
population of 200 individuals is created by uniformly 
sampling the binary bit values.  
During the genetic search, each time a new 
chromosome is created, the corresponding matrices 
{ aij} and {pij} are constructed to compute the values 
of the two objective functions, network global 
reliability efficiency and cost of the associated 
improved network. 
Figure 6 shows the Pareto dominance front (squares) 
obtained by the MOGA at convergence after 103 
generations; the circle represents the original 
network with [ ] 0.2992RE G =  and 

[ ] 332.0120C G = , while the star represents the 
network fully connected by the most reliable 
transmission lines 1 0.2267λ =  occ/yr, for which 

[ ] 0.57RE G =  and [ ] 804.1072C G = . 
 

 
 
Figure 6. Pareto front reached by the MOGA  
 
The optimality search is biased from the beginning 
(from the initial population) towards highly 
connected network solutions, because the string (00) 
has a probability of 0.25 whereas the probability of 
adding a connection of any one of the three available 
types (i.e., the probability of the strings 01, 10, 11) is 
0.75; this drives the population evolution to highly 
connected networks in the Pareto front (squares in 
Figure 6), all with values [ ] 0.4417RE G ≥ , 

[ ] 454.4738C G ≥  and numbers of added connections 

exceeding 60. 
In practical applications only a limited number of 
lines can be added, due to the large investment costs 
and other physical constraints. To drive the genetic 
search towards low cost solutions (i.e., low number 
of added lines) maximal and minimal trade-offs to 
the two objectives of the optimization (network 
global reliability efficiency and cost) can be defined 
within a Guided Multi-Objective Genetic Algorithm 
(G-MOGA) scheme, [17]. The preferential 
optimization has been performed by using G-
MOGA, with the same population size, evolution 
procedures and parameters of the previous search. In 
this approach, the search is guided by defining the 
maximal and minimal trade-offs that allow to 
identify a precise section of the Pareto front. The 
values of the trade-off parameters have been set by 
trial-and-error to a12=331.3157 and a21=0; the search 
converges to a small number of solutions in a Pareto 
front which is more concentrated on low cost 
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networks, characterized by a limited number of 
added connections (asterisks in Figure 6). 
Table 4 lists the five solutions of lowest cost 
identified by the G-MOGA search: the added 
connections improve the network global reliability 
efficiency and they do so with relatively small costs. 
 
Table 4. The five solutions on the Pareto front 
obtained by the G-MOGA 
 

G-MOGA 
Reliability 
Efficiency 

Cost 

0.3072 337.6 
0.3168 339.4 
0.3186 339.4 
0.3187 339.4 
0.3193 339.4 

 
6. Conclusions 
 

This paper has illustrated the use of MOGA in the 
topological analysis of complex, interconnected 
network systems. The electrical transmission 
network system of the IEEE (Institute of Electrical 
and Electronic Engineers) 14 BUS (a portion of the 
American Electric Power System) has been taken as 
case study for the analysis by MOGA of the 
importance of groups of components, measured in 
terms of their centrality in the structure of 
interconnection paths. The results obtained using the 
group reliability closeness centrality measure as 
importance indicator have shown that the groups 
classified as most central indeed contain the nodes of 
individual highest centrality but may also include 
nodes with a relatively low centrality. The groups 
most important from the point of view of group 
reliability closeness have been shown to be also the 
most vulnerable to direct attacks, by a crude 
procedure of removal of nodes and arcs one at a 
time. 
A MOGA for improving an electrical transmission 
network (IEEE RTS 96) has been implemented with 
the objective of identifying the lines to be added for 
maximizing the network transmission reliability 
efficiency, while maintaining the investment costs 
limited. A preferential procedure of optimization has 
been performed by using G-MOGA for individuating 
realistic network expansion solutions made of few 
new transmission lines.  
From the point of view of the physical analysis of the 
electrical transmission system which the networks 
represent, some limitations affect the results 
obtained. These limitations are all related to the fact 
that the analysis performed focuses only on the 
topological features of the network, thus neglecting 
its physical characteristics; this is not realistic for 

electrical transmission networks in which: i) the 
“electrical” length of a path differs from the 
topological length, depending on the difficulty 
(resistance) of transmission; ii) the electrical power 
is not necessarily routed through the shortest paths 
(as assumed to compute the network reliability 
closeness centrality and efficiency values): rather, 
the transmission of power is determined by physical 
rules, e.g. Kirchoff’s laws, nodal voltages etc.; iii) in 
the identification of the paths connecting nodes in the 
network, the direction of power flow should be taken 
into account in order to avoid considering paths 
which are not meaningful from the physical point of 
view; iv) the nodes on the real electrical network 
represent different components, i.e. generation, 
transmission and distribution buses. These physical 
aspects specific of electrical transmission networks 
must be included in the analysis for obtaining 
realistic insights on the robustness and vulnerability 
of these systems to faults and attacks. Work is 
currently undergoing in establishing effective ways 
of bringing these physical characteristics into the 
topological analysis. 
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