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Abstract

The results of two applications of multi-objectigenetic algorithms to the analysis and optimizatodn
electrical transmission networks are reported towshhe potential of these combinational optimizatio
schemes in the treatment of highly interconneatedjplex systems. In a first case study, an anabfstbe
topological structure of an electrical power trarssion system of literature is carried out to idgrihe most
important groups of elements of different sizeshie network. The importance is quantified in tewhgroup
closeness centrality. In the second case stadgptimization method is developed for identifysigategies of
expansion of an electrical transmission networladigtition of new lines of connection. The objectis¢hat of
improving the transmission reliability, while maitting the investment cost limited.

1. Introduction robustness to failure becomes difficult if one réeso

S . only to traditional probabilistic safety assessment
Our society is heavily dependent on many complex(PSA) methods, so that new complementary

systems, technological, natural and even socidl thaapproaches of network analysis are emerging for
are hierarchies of networks of components (alSOparacterizing the network resistance to failurel an
called noqles, vertices or elements) 'nteracungidentifying its most vulnerable elements [2], [Bl],
through links (also called edges, arcs or[8] 9], [15]

connections).  Identifying and quantifying the A"relevant outcome of the analysis of the network

\éuln_ergbiliti(ra]s 05 such systems is crucial for gurcryre is the identification of the most impatta
esigning the adequate protections, mitigation alncgroups of elements of different sizes in the nekwor

emergency actions against their failures [3], [10],y/arious measures of importance can be defined,
[13]. - which capture different structural aspects of the
The ‘apparent ubiquity of networks leads 10 ajnierconnection paths among network nodes.
fascinating set of problems common to biological, |, this paper, two applications of multi-objective
ecological, technological and social complex genetic ' algorithms (MOGAS) are reported with
systems, regarding how the underlying networkieqarqs to the analysis and optimization of eleatri
topology influences the system behavior and itSyangmission networks. In the first case studye th

characteristics of stability and robustness tot$aul gjactrical transmission network system of the IEEE

and attacks. : : : .
. . . L (Institute of Electrical and Electronic Engineeis)
Given the complexity of these highly distributedlan g ;g (a portion of the American Electric Power

interconnected  infrastructures,  performing 2 system) is considered [12] and a MOGA is used to
systematic analysis of their vulnerability and
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solve an optimization problem in which the decision The group closeness centrality [4°(g), is based
variables identify groups of components and the,, ihe jgea that a node can quickly interact with a
objectives are to maximize the importance of theginar nodes if it is easy accessible (close to) all

groups while minimizing their dimension. This ; :
formulation guides the MOGA search towards theothers. If d; is the topological shortest path length

identification of the most important single Petween nodes and j (i.e., the minimum number

components, couples of components, triplets, and sof arcs on a path connecting them), the closerfess o
forth in the topological structure of the network. group g of N, nodesis the sum of the distances
In the second case study, a MOGA is developed fo

) - . 3 4 10k 0m the members of the group to all vertices alatsi
identifying strategies of expansion of an electrica

. : . the group:
network in terms of new lines of connection to add group
for improving the reliability of its transmission
. . Lo o . N-N
service, while maintaining limited the investment C¢(g)= 9 (1)
cost. The typical large size of electrical networks . z d;
offers a combinatorial number of potential solusion 109,106

of new connections, so that classical optimization

techniques become inapplicable. For this reason, wéhis measure is normalized by dividing the distance
resorted to a MOGA driven by the objectives of score into the number of non-group members, with
maximizing the network global reliability efficiepc  the result that larger numbers indicate greater
[16] and minimizing the cost of the added centrality.

connections. To realistically restrict the seampace ~ When the group consists of a single node, the group
to small numbers of new connections the so-callecFloseness centrality is the same as the individual
guided multi-objective genetic algorithm (G-MOGA) node closeness centrality [5], [11], [14].

has been applied. In this approach, the search i§0 capture the failure behavior of the network, the
based on the guided domination principle whichreliability of its connecting edges is includedtive
allows to change the shape of the dominance regioffamework of analysis by means of the formalism of
specifying maximal and minimal trade-offs betweenweighted networks, the weight; associated to the

the different objectives so as to efficiently guitle  oqge between the pair of nodesand j being its
MOGA towards Pareto-optimal solutions within

these boundaries [17]. The performance of thisre“abmty:
search approach is tested on a case study based on T
the |EEE (Institute of Electrical and Electronic P =€ )

Engineers) RTS (Reliability Test System) 96 [1].

The paper is organized as follows. Section 2 ptesen yhere) is the failure rate of edgg linking nodes
the group closeness centrality measure which can be ! _ _ _
used to quantify the importance of groups of nodes! @nd j and T is a reference timeT(=1 year, in
The concept of network global reliability efficignc  this work).

is also presented. A short introduction to the dasi On the basis of the adjacency and reliability ncasi
concepts behind the optimization procedure by{aﬂ} and{ p“.} , the matrix of the most reliable path
Multi-Objective Genetic Algorithms is given in

Section 3. In Section 4 and Section 5, the Caséengths{ rdij} can be computed [16].

studies regarding the IEEE 14 BUS network systenThe group reliability closeness centrality can then
and |[EEE RTS 96 are presented and solved by.omputed as in eq. (1), wittd, replacingd, .

MOGA. Conclusions on the outcomes of the analysi _— -
are eventually drawn in Section 6. SThe global rellablllf[y efficiencyRE G of the graph
G can also be defined as [16]:

2. Topological group closeness centrality and

global reliability efficiency REG=——— 3 (Urd) 3)
N N _1 i iZi
Mathematically, the topological structure of a (N=1).,5

network can be represented as a grggh, K) with

N nodes connected It edges. The connections are
defined in anNx N adjacency matrix ;} whose  Genetic Algorithms (GAs) are optimization methods
entries are 1 if there is an edge joining nddéo  aiming at finding the global optimum of a set aélre
node j and O otherwise. objective functions, FE{ f([)}, of one or more

3. Multi-objective genetic algorithms
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decision variables,U E{ u}, possibly subject to considered for the analysis of the importance of
various linear or non linear constraints. The 9OUPS of components, measured in terms of

terminology adopted in GAs contains many termsre“ap(']:'ty d closeness:[ centra;_llty. thr;]e Asyst(_em
borrowed from biology, suitably redefined to fietn CONSIGEred represents a portion of the American

algorithmic context. Thus, GAs operate on a set o leCt.”C Power System a_nd consists A bus
(artificial) chromosomes, which are strings of locations connected b0 lines and transformers.

numbers, generally sequences of binary digits)(Bits The topology of th? system can be representededy th
and 1, coding the values of the decision variables9raphG(14,20) ofFigure 1
The values of the objective functions in
correspondence of the values of the decision
variables of a chromosome, give the fitness of thal
chromosome. The GA search is performed by
constructing a sequence of populations of
chromosomes, the individuals of each population
being the children of those of the previous poparat
and the parents of those of the successive popnulati
The initial population is generated by randomly
sampling the bits of all the strings; at each steihe
search sequence, the new population is obtained b
probabilistically manipulating the strings of th&l o
population with fitness-improving rules which mimic
genetic evolution. The search sequence continue
untii a pre-established optimality termination
criterion is reached. Figure 1 Graph representation of the IEEE 14 BUS
Typically, several possibly conflicting objective transmission network

functions f (01 i = 1, 2,...,n;, must be evaluated in

correspondence of each decision variable vettor 4.2 | dentification of most central groups of
in the search space. In this case, the GA searcRodesby MOGA

proceeds by comparing the solutions in terms of thex MOGA has been implemented to identify the most

concepts ofPareto optimality and dominancis]:  reliapility-central groups of nodes of differentzes

with _reference to a maximization problem proposedin the network ofFigure 1, considering the group

solutionU, is said to dominatéJ,, if reliability closeness centrality measure and the
0i D{ 1,2,..n, } U = U,) dimension of the group as objective functiohable

1 summarizes the details of the implementation of
the MOGA operators described in Section 3 along

and (4) with a number of parameters that control the
operation of the genetic algorithm such as the
I D{l 2 nf} fU, Pt U,) population size (i.e., the size of the evolving skt
2, 0. P

candidate solutions) and the number of generations

The decision variable vectors which are not(i-€., the duration of the evolution process). The
dominated by any other of a given set are called®Ptimization runs were performed starting from an
nondominatedwith respect to this set; the decision initial random population. _

variable vectors that are nondominated within theFigure 2 shows the results obtained on the
entire search space are said tcdPlaeeto optimaland ~ importance of the group in terms of reliability
constitute the so calleBareto optimal frontwhich ~ closeness centrality. In the Figure, the valueshef

is the object of the optimization. objective functions in correspondence of all the
nondominated groups of nodes contained in the
4. Case study 1 MOGA archive at convergence are shown to identify

the two-dimensional Pareto-optimal surface (cifcles
4.1 1EEE 14 BUS electrical transmission

networ k

The topological structure of the electrical
transmission network system of the IEEE (Institute
of Electrical and Electronic Engineers) 14 BUS (a
portion of the American Electric Power System) is
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Table 1 MOGA parameters and rules redundancy allocation in order to use effectivéig t
budget available.

Number of chromosomes 200 In the present case, the smallest group with maxima
Number of generations 200 reliability closeness is of size 10 and there araf 2
Selection Fit-Fit these. The group {1, 2, 3, 5, 7, 10, 11, 12, 13,i44
Replacement Children-parents particularly interesting because it does not contai
Mutation probability 0.001 the highly central node {4} and contains the node
Crossover probability 1 {1} that have the smallest individual reliability
Number of generations 15 closeness centrality measure, as it can be seen in
without elitist selection Table 3
Fraction of parents chosen | 0.25
with elitist selection Table 2 Pareto optimal results of the multi-objective

search for reliability closeness centrality groups

The results are compared for validation with those
obtained by exhaustive computation of all groups gf Group | Group Components

nodes (i.e., the computation of the group religpili | reliability | - Size
closeness centrality measure for all the possibleCl0Seness
combinations ofn out of N nodes; due to the fact Ceongggty 1 2
that the number of groups obtained B, its 047 2 (4, 6), (6, 9)
implementation is feasible here thanks to the smaii™ g 5g2 3 2,6,9)
size of the network but would require impractical  0.602 4 (1,2,6,9), (1, 3,6,9), (2,3, 6, 9)
computational resources for large networks). 0.659 5 (1,2, 3,6,9)
0.688 6 (1,2,3,6,7,9),(1,2,3,6,8,9
1H " All p‘ossible‘combir;ations g— 0.761 7 (1’ 2,3,5,7,10, 13)’ (1’ 2,3,5,7,
o Pareto 11, 13), (1, 2, 3, 6, 7, 10, 13), (1, R,
0.9} . 3,6,7,10,14),(1,2,3,6,7, 11
. 13), (1, 2, 3, 6, 7, 11, 14)
o % o O e 7 0.802 8 | (1,23,5,7,10,11,13),(1, 2, 3| 5,
g o7l - 7,10, 12,13), (1, 2,3,5, 7, 11, 1P,
g ] : i3 14), (1, 2,3, 6, 7, 10, 11, 13), (1, 2,
208 .9 i 3,6,7,10,12,13),(1,2,3,6,7
g 0s : I s 11,12, 14) ...
s Q ! 0.868 9 (1,2,3,5,7,10,11, 12, 13), (1,|2,
3 o4 : 1 3,5,7, 10, 11, 13, 14), (1, 2, 3, 8,
© | ¢ ! 7,11,12, 13, 14) ...
03 H ' ] 0.99 10 (1,2,3,5,7,10,11, 12, 13, 14),
0al ! . | (1,2,3,6,7,10,11, 12, 13, 14)
5 3 4 s s 7 s o 1o Table3Individual reliability closeness centrality
Group size
Node | Reliability closeness centrality]
Figure 2 Results of the multi-objective search of the 4 0.3031
most central groups of nodes in terms of reliapilit 9 0.2998
closeness centrality 5 0.2835
7 0.2742
Actually, different groups of equal size can halve t 6 0.2716
same centrality measure valdable 2reports all the 14 0.253
nondominated solutions contained in the archive, 10 0.2448
identified by the MOGA. For the groups composed 13 0.2448
of one to three and five nodes, there is only one 11 0.2371
combination that maximizes the group reliability 2 0.2272
closeness centrality measure; on the other haatk th 8 0.2184
is more than one solution for the groups with sizes 132 8‘%33;
four and six to ten; this allows choosing the dolut 1 0'1723

most suitable for a given purpose, e.g. system
upgrade by components renewal, replacement, or
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To gain an engineering feeling of the impact on the 2w 21 ﬁ,
network transmission performance resulting from the "1

failure of the nodes of a group of a given relidpil @jrll

closeness centrality value, the relative global "
reliability efficiency variation of the network is e
reported inFigure 3 The relative variation of the

global reliability efficiency due to the removal af e " -
group of nodes is computed as the difference | -
between the values of the global reliability effiocy l(
(eq. (3)) of the network with all the nodes of the

group (and all the incident arcs) removed and ef th
original network with no nodes removed, normalized

to the latter.

1

19 20

Figure 4 IEEE RTS 96 transmission network.

-10

v 2nod . . .

PR * nodes oo Figure 5 gives the representation of the graph
wl T ¢ drodes grap) G(24,34) of the transmission network; the
szgﬁﬁ * & notks g corresponding 24x 24 adjacency matrix &} has
“r 4 ROR * 7nodes group | entry equal tol if there is a line or transformer

'4:?5, ; . °  8nodes group .. . .
- e . o paetoont between bus locationsand j andO otherwise.

60}

70k

80}

90}

Global reliability efficiency relative variation (%)

-100 ‘ Eea
0.2 03 0.4 05 06 07 08

Group reliability closeness centrality measure

Figure 3 Relative variation of the global reliability
efficiency as a function of group closeness ceityral
measure

The results show that there is a strong relation
between the size of the groups removed and the
efficiency of the network and that the most
reliability-close central groups (i.e., those ineth
Pareto front) are indeed the most important alsmfr
the point of view of the negative impact on the )
network global reliability efficiency, when theyita ~ Figure 5 The IEEE RTS 96 graph representation

5. Case study 2 5.2 Optimal network expansion by MOGA

51 IEEE RTS 96 dectrical transmission A MQGA has been_ constructed for identifying the
network best improvements in the connection of the network,

aimed at increasing its global reliability effic@nin

The transmission network system IEEE RTS 96 istransmission at acceptable costs. The improvements
considered Kigure 4 [1]. The network consists of are obtained by addition of new lines between nodes
24 bus locations (numbered in bold in the Figure)with no direct connection in the original network.
connected by 34 lines and transformers. TheGiven the lack of geographical information on the
transmission lines operate at two different voltagenodes locations, for simplicity and with no loss of
levels, 138 kV and 230 kV. The 230 kV system is thegenerality, three typologies of lines have been
top part ofFigure 4 with 230/138 kV tie stations at arbitrarily chosen as the minimum, the mean and the
Buses 11, 12 and 24. maximum values of the failure rates of the
transmission lines taken from [1]:
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A, =0.2267 outages/y C[G]=332.012¢, while the star represents the
A, =0.3740 outages/y network fully connected by the most reliable

transmission lines A =0.2267 occl/yr, for which

A, =0.5400 outages/y RE[ G =0.57 and C[G] =804.107-.

The addition of a new line requires an investment . ‘ . ‘ ‘
cost assumed inversely proportional to the failure | | © Origial network RE=D2982, C=320120 | L ]

. . B0 % Max nelwark RE=01.57, C=804.1072 i i
rate. The network cost can be then defined as: o 00025 ; ;
Ty GMoGA a1-31 3157, @210 [ R

e CRRRCERRERE: femeee s b

Clq = i j%#—j (1/ /]iJ' ) ) 550— ———————————— ————————

The reliability cost of the original IEEE RTS 96 is 55”* """""" """"
C[G] =332.012C in arbitrary monetary units and the ~ #0p .

reliability efficiency is RE[ G] =0.2992, which is a [ I R R .

relatively high value representative of a globally i
reliable network. grwE ] | ; ;
The network global reliability efficiency and case 0% 03 xS 0g 06
adopted as objective functions in the MOGA

optimization of the network improved structure.

From the algorithmic point of view, a proposal of Figure 6 Pareto front reached by the MOGA
improvement amounts to changing from 0 to 1 the

values of the elements in the adjacency matrixThe optimality search is biased from the beginning
corresponding to the added connections. The onlyfrom the initial population) towards highly
physical restriction for adding direct new connected network solutions, because the string (00
connections is that the connected nodes must be &@as a probability of 0.25 whereas the probability o
the same voltage level (138 or 230 kV), otherwiseadding a connection of any one of the three availab
the addition of a transformer would also be neededtypes (i.e., the probability of the strings 01, 1Q) is
From the genetic algorithm point of view, the 0.75; this drives the population evolution to highl
generation of proposals of network improvementsconnected networks in the Pareto front (squares in
can be achieved by manipulating a population ofFigure 6, all with values RE[ G]20.4417,
chromosomes, each one with a number of bits equ :

o 214 which is double the number of zeros (ife, ¢ ab[G] 2'454.4732 and numbers of added connections
number of missing direct connectioifisin the upper ~ €xceeding 60. o

triangular half of the symmetric adjacency matrix IN Practical applications only a limited number of
{a;}. The bits are dedicated to each missing direct/iN€s can be added, due to the large investmers cos
connectionij so as to code the three different and other physical constraints. To erve the geneti
available types of lines with failure rates i, and/s: search towards low cost solutions (i.e., low number
in other words, the bit-string (00) is used to ctie ~ Of added lines) maximal and minimal trade-offs to
absence of connection, (01) connection line with athe two objectives of the optimization (network
Ja-type line, (10) connection with B-type line and  global reliability efficiency and cost) can be aefd

(11) connection with alstype line. The initial ~ Wwithin a Guided Multi-Objective Genetic Algorithm
population of 200 individuals is created by uniftym (G-MOGA) scheme, [17]. The preferential
sampling the binary bit values. optimization has been performed by using G-
During the genetic search, each time a newMOGA, with the same population size, evolution
chromosome is created, the corresponding matriceprocedures and parameters of the previous search. |
{&;} and {p;} are constructed to compute the values this approach, the search is guided by defining the
of the two objective functions, network global maximal and minimal trade-offs that allow to
reliability efficiency and cost of the associated identify a precise section of the Pareto front. The
improved network. values of the trade-off parameters have been set by
Figure 6shows the Pareto dominance front (squares}rial-and-error ta;,=331.3157 ana,;=0; the search
obtained by the MOGA at convergence after 10 converges to a small number of solutions in a Baret
generations; the circle represents the originalfront which is more concentrated on low cost
network with RE[ G| =0.2992 and

Cost

400 e e e
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networks, characterized by a limited number ofelectrical transmission networks in which: i) the
added connections (asteriskghigure 6). “electrical” length of a path differs from the
Table 4 lists the five solutions of lowest cost topological length, depending on the difficulty
identified by the G-MOGA search: the added (resistance) of transmission; ii) the electricaivpo

connections improve the network global reliability is not necessarily routed through the shortestspath

efficiency and they do so with relatively smalltos ~ (as assumed to compute the network reliability
closeness centrality and efficiency values): rather

Table 4 The five solutions on the Pareto front the transmission of power is determined by physical

obtained by the G-MOGA rules, e.g. Kirchoff's laws, nodal voltages etd);in
the identification of the paths connecting nodethin
G-MOGA network, the direction of power flow should be take
Reliability Cost into account in order to avoid considering paths
Efficiency which are not meaningful from the physical point of

83%5 gggg view; iv) the nodes on the real electrical network
0.3186 3394 represent different components, i.e. generation,
0.3187 3394 transmission and distribution buses. These physical
0.3193 3394 aspects specific of electrical transmission network
must be included in the analysis for obtaining
6. Conclusions realistic insights on the robustness and vulnetgbil

_ _ _ of these systems to faults and attacks. Work is
This paper has illustrated the use of MOGA in thecurrently undergoing in establishing effective ways

topological analysis of complex, interconnectedof bringing these physical characteristics into the
network systems. The electrical transmissiontopological analysis.

network system of the IEEE (Institute of Electrical

and Electronic Engineers) 14 BUS (a portion of theacknowledgments

American Electric Power System) has been taken as

case study for the analysis by MOGA of the This work has been funded by the Foundation pour
importance of groups of components, measured ipne Culture de Securite Industrielle of Toulouse,
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