PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light-stimulated electro-optics by azo-doped aerosil/7CB nanocomposites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photoactive nanofilled nematic is proposed. Stable three-component photoresponsive nanocompositewas prepared from photo-insensitive nanofilled nematic by inclusion of 3 wt.% azobenzene-containingphotoactive mesogen 4-(4’-ethoxyphenylazo)phenyl hexanoate (EPH). The host nanofilled nematicwas produced from the room-temperature nematic liquid crystal 4-n-heptyl cyanobiphenyl (7CB) and3 wt.% filler of Aerosil 300 hydrophilic silica nanospheres of size 7 nm. Apparent effect of stimulation with a relatively weak continuous illumination by UV light (375 nm wavelength) takes placefor both the alternating-current electric field-dependent optical transmittance and the electro-opticamplitude-frequency modulation by thin films (25 μm thick) of the EPH/aerosil/7CB nanocomposite. Thelight-stimulated electro-optics of EPH-doped aerosil/7CB films and the corresponding reversible lightcontrol are achieved through trans-cis-trans photoisomerization of the photoactive agent EPH. As such,the initial electro-optical response of the studied photoactive nanocomposites is recovered with continuous blue-light illumination. The examined EPH/aerosil/7CB nanocomposites exhibit photo-controllableelectro-optical response that is of practical interest.
Twórcy
  • Laboratory of Optics & Spectroscopy, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia, BG-1784, Bulgaria
  • Laboratory of Biomolecular Layers, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia, BG-1784, Bulgaria
autor
  • Laboratory of Biomolecular Layers, Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia, BG-1784, Bulgaria
autor
  • Centre for Nano and Soft Matter Sciences, P.O. Box 1329, Jalahalli, Bengaluru 560 013, India
Bibliografia
  • [1] H. Stark, Physics of colloidal dispersions in nematic liquid crystals, Phys. Rep. 351 (2001) 387–474, http://dx.doi.org/10.1016/S0370-1573(00)00144-7.
  • [2] Y.A. Garbovskiy, A.V. Glushchenko, Liquid crystalline colloids of nanoparticles: preparation, properties and applications, in: R.E. Camley, R.L. Stamps (Eds.), Solid State Physics, vol. 62, Academic Press, Elsevier, San Diego, CA, USA, 2011, pp. 1–74.
  • [3] J.P.F. Lagerwall, G. Scalia, A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology, Curr. Appl. Phys. 12 (2012) 1387–1412, http://dx.doi.org/10.1016/j.cap.2012.03.019.
  • [4] C. Blanc, D. Coursault, E. Lacaze, Ordering nano- and microparticles assemblies with liquid crystals, Liq. Cryst. Rev. 1 (2013) 83–109, http://dx.doi. org/10.1080/21680396.2013.818515.
  • [5] A. Hauser, O.V. Yaroshchuk, H. Kresse, Aerosil in liquid crystals, Mol. Cryst. Liq. Cryst. Sci. Technol. Section A. Mol. Cryst. Liq. Cryst. 330 (1999) 407–414, http://dx.doi.org/10.1080/10587259908025616.
  • [6] T. Kato, Self-assembly of phase-segregated liquid crystal structures, Science 295 (2002) 2414–2418, http://dx.doi.org/10.1126/science.1070967-a.
  • [7] G.S. Iannacchione, Review of liquid-crystal phase transitions with quenched random disorder, Fluid Phase Equlibria 222–223 (2004) 177–187, http://dx. doi.org/10.1016/j.fluid.2004.06.022.
  • [8] S.K. Prasad, K.L. Sandhya, G.G. Nair, U.S. Hiremath, C.V. Yelamaggad, S. Sampath, Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites, Liq. Cryst. 33 (2006) 1121–1125, http://dx.doi.org/10.1080/02678290600930980.
  • [9] M. Marinelli, A.K. Ghosh, F. Mercuri, Small quartz silica spheres induced disorder in octylcyanobiphenyl (8CB) liquid crystals: a thermal study, Phys. Rev. E 63 (1–9) (2001), 061713, http://dx.doi.org/10.1103/PhysRevE.63. 061713.
  • [10] A. Roshi, G.S. Iannacchione, P.S. Clegg, R.J. Birgeneau, Evolution of the isotropic-to-nematic phase transition in octyloxycyanobiphenyl+aerosil dispersions, Phys. Rev. E 69 (1–11) (2004) 031703, http://dx.doi.org/10.1103/ PhysRevE.69.031703.
  • [11] C.V. Lobo, S.K. Prasad, C.V. Yelamaggad, Experimental investigations on weakly polar liquid crystal–aerosil composites, J. Phys.: Condens. Matter 18 (2006) 767–776, http://dx.doi.org/10.1088/0953-8984/18/3/002.
  • [12] V. Jayalakshmi, G.G. Nair, S.K. Prasad, Effect of aerosil dispersions on the photoinduced nematic–isotropic transition, J. Phys.: Condens. Matter 19 (226213) (2007) 1–12, http://dx.doi.org/10.1088/0953-8984/19/22/226213.
  • [13] M. Kreuzer, R. Eidenschink, Filled nematics, in: G.P. Crawford, S. Zumer (Eds.), Liquid Crystals in Complex Geomteries Formed by Polymer and Porous Networks, Taylor & Francis, London, UK, 1996, pp. 307–324.
  • [14] C.Y. Huang, C.C. Lai, Y.H. Tseng, Y.T. Yang, C.J. Tien, K.Y. Lo, Silica-nanoparticle-doped nematic display with multistable and dynamic modes, Appl. Phys. Lett. 92 (1–3) (2008), http://dx.doi.org/10.1063/1.2938880, 221908.
  • [15] C.Y. Huang, Y.J. Huang, Y.H. Tseng, Dual-operation-mode liquid crystal lens, Opt. Express 17 (2009) 20860–20865, http://dx.doi.org/10.1364/OE.17. 020860.
  • [16] Y.G. Marinov, G.B. Hadjichristov, A.G. Petrov, S.K. Prasad, Electro-optic modulation by silica-nanostructured nematic system (aerosil/7CB nanocomposite, Compos. Part B-Eng. 90 (2016) 471–477, http://dx.doi.org/10. 1016/j.compositesb.2016.01.034.
  • [17] Y.G. Marinov, G.B. Hadjichristov, A.G. Petrov, S. Krishna Prasad, Thin films of silica nanoparticle doped nematic liquid crystal 7CB for electro-optic modulation, Photon. Lett. Pol. 7 (2015) 94–96, http://dx.doi.org/10.4302/plp. 2015.4.03.
  • [18] S.K. Prasad, G.G. Nair, G. Hegde, K.L. Sandhya, D.S.S. Rao, C.V. Lobo, C.V. Yelamaggad, Photoinduced effects in nematic liquid crystals, Phase Transit. 78 (2005) 443–455, http://dx.doi.org/10.1080/01411590500185690.
  • [19] A.G. Petrov, Y.G. Marinov, G.B. Hadjichristov, S. Sridevi, U.S. Hiremath, C.V. Yelamaggad, S.K. Prasad, New photoactive guest-host nematics showing photoflexoelectricity, Mol. Cryst. Liq. Cryst. 544 (2011) 3/[991]–13/[1001], http://dx.doi.org/10.1080/15421406.2011.569221.
  • [20] S. Sridevi, U.S. Hiremath, C.V. Yelamaggad, S.K. Prasad, Y.G. Marinov, G.B. Hadjichristov, A.G. Petrov, Behaviour of photosensitive soft materials: thermo-optical, dielectric and elastic constant studies on azo-dye doped nematic liquid crystals, Mater. Chem. Phys. 130 (2011) 1329–1335, http://dx. doi.org/10.1016/j.matchemphys.2011.09.027.
  • [21] C.V. Yelamaggad, S.K. Prasad, Q. Li, Photo-stimulated phase transformations in liquid crystals and their non-display applications, in: Q. Li (Ed.), Liquid Crystals Beyond Displays, Chemistry, Physics, and Applications, John Wiley & Sons, Hoboken, NJ, USA, 2012, pp. 155–211.
  • [22] J. Mysliwiec, A. Miniewicz, S. Nespurek, M. Studenovsky, Z. Sedlakova, Efficient holographic recording in novel azo-containing polymer, Opt. Mater. 29 (2007) 1756–1762, http://dx.doi.org/10.1016/j.optmat.2006.10.003.
  • [23] A. Miniewicz, H. Orlikowska, A. Sobolewska, S. Bartkiewicz, Kinetics of thermal cis–trans isomerization in a phototropic azobenzene-based single-component liquid crystal in its nematic and isotropic phases, Phys. Chem. Chem. Phys. 20 (2018) 2904–2913, http://dx.doi.org/10.1039/ C7CP06820D.
  • [24] E. Schab-Balcerzak, A. Sobolewska, A. Miniewicz, J. Jurusik, Chromophore concentration effect on holographic grating formation efficiency in novel azobenzene-functionalized polymers, Polym. Eng. Sci. 48 (2008) 1755–1767, http://dx.doi.org/10.1002/pen.21140.
  • [25] A. Miniewicz, J. Mysliwiec, F. Kajzar, J. Parka, On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems, Opt. Mater. 28 (2006) 1389–1397, http://dx.doi.org/10.1016/j.optmat.2005.08.020.
  • [26] Y.G. Marinov, G.B. Hadjichristov, A.G. Petrov, S.K. Prasad, Photo-controllable electro-optics of aerosil/7CB nanocomposite nematic doped with azo-bonded molecules, J. Phys.: Conf. Ser. 682 (1–5) (2016) 012030, http://dx.doi.org/10. 1088/1742-6596/682/1/012030.
  • [27] G.B. Hadjichristov, Y.G. Marinov, Photoresponsive azo-doped aerosil/7CB nematic liquid-crystalline nanocomposite films: the role of polyimide alignment layers of the films, J. Phys.: Conf. Ser. 780 (1–7) (2017) 012008, http://dx.doi.org/10.1088/1742-6596/780/1/012008.
  • [28] Y.G. Marinov, G.B. Hadjichristov, A.G. Petrov, S.K. Prasad, Photoresponsive azo-doped aerosil/7CB nematic nanocomposites: the effect from concentration of the azobenzene photoactive agent, J. Phys.: Conf. Ser. 794 (1–7) (2017) 012037, http://dx.doi.org/10.1088/1742-6596/794/1/012037.
  • [29] M.V. Kumar, S.K. Prasad, Y. Marinov, L. Todorova, A.G. Petrov, Flexo-dielectro-optical spectroscopy as a method of studying nanostructured nematic liquid crystals, Mol. Cryst. Liq. Cryst. 610 (2015) 51–62, http://dx.doi. org/10.1080/15421406.2015.1025205.
  • [30] B.R. Ratna, R. Shashidhar, Dielectric properties of 4’-n-alkyl-4-cyanobipheniyls in their nematic phases, Pramana 6 (1976) 278–283 http://www-old.ias.ac.in/j archive/pramana/6/5/278-283/viewpage. html.
  • [31] G.S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions, Phys. Rev. E 58 (1998) 5966–5981, http://dx.doi.org/10.1103/PhysRevE.58.5966.
  • [32] R. Bandyopadhyay, D. Liang, R.H. Colby, J.L. Harden, R.L. Leheny, Enhanced elasticity and soft glassy rheology of a smectic in a random porous environment, Phys. Rev. Lett. 94 (1–4) (2005), 107801, http://dx.doi.org/10. 1103/PhysRevLett.94.107801.
  • [33] Y.G. Marinov, G.B. Hadjichristov, A.G. Petrov, S. Sridevi, U.S. Hirenath, C.V. Yelamaggad, S.K. Prasad, Trans-cis photoizomerization-induces tilted anchoring in photoactive guest-host liquid crystalline systems, J. Phys. Conf. Ser. 398 (1–6) (2012) 012038, http://dx.doi.org/10.1088/1742-6596/398/1/ 012038.
  • [34] M. Mizuno, T. Shinoda, H. Mada, S. Kobayashi, Electronic spectra of 4-n-heptyl-4‘-cyanobiphenyl (7CB) in nematic and isotropic liquid states, Mol. Cryst. Liq. Cryst. 56 (1979) 111–114, http://dx.doi.org/10.1080/01406567908071977.
  • [35] J. Cooper, Compositional analysis of Merck E7 liquid crystal intermediates using ultra performance convergence chromatography (UPC2) with PDA detection, in: Application Note–Merck Liquid Crystal Custom Report, Waters Corporation, Manchester, UK, 2013, pp. 1–7; http://www.waters.com/webassets/cms/library/docs/720004814en.pdf,. (Accessed 11 October 2017).
  • [36] S. Lee, C. Park, Agglomeration of silica nanoparticles in filled nematic liquid crystals, Mol. Cryst. Liq. Cryst. 333 (1999) 123–134, http://dx.doi.org/10.1080/ 10587259908025999.
  • [37] S.B. Lee, K. Nakayama, T. Matsui, M. Ozaki, K. Yoshino, Structure and dynamics in liquid crystals of suspensions of silica particles under a low frequency AC applied voltage, IEEE Trans. Dielectr. Electr. Insul. 9 (2002) 31–38, http://dx. doi.org/10.1109/94.983881.
  • [38] T. Bellini, N.A. Clark, Light scattering as a probe of liquid crystal ordering in silica aerogels, in: G.P. Crawford, S. Zumer (Eds.), Liquid Crystals in Complex Geomteries Formed by Polymer and Porous Networks, Taylor & Francis, London, UK, 1996, pp. 381–410.
  • [39] F. Mercuri, A.K. Ghosh, M. Marinelli, Disorder effects in low concentration dispersions of small quartz spheres in cyanobiphenyl liquid crystals, Phys. Rev. E 60 (1999) R6309–R6312, http://dx.doi.org/10.1103/PhysRevE.60.R6309.
  • [40] T. Bellini, M. Buscaglia, C. Chiccoli, F. Mantegazza, P. Pasini, C. Zannoni, Nematics with quenched disorder: what is left when long range order is disrupted? Phys. Rev. Lett. 85 (2000) 1008–1011, http://dx.doi.org/10.1103/ PhysRevLett.85.1008.
  • [41] M. Caggioni, A. Roshi, S. Barjami, F. Mantegazza, G.S. Iannacchione, T. Bellini, Isotropic to nematic transition of aerosil-disordered liquid crystals, Phys. Rev. Lett. 93 (1–4) (2004), 127801, http://dx.doi.org/10.1103/PhysRevLett.93. 127801.
  • [42] S.K. Prasad, G.G. Nair, V. Jayalakshmi, Electric-field-assisted acceleration of the photostimulated nematic-isotropic transition, Adv. Mater. 20 (2008) 1363–1367, http://dx.doi.org/10.1002/adma.200701393.
  • [43] Y. Zhao, T. Ikeda (Eds.), Smart Light-Responsive Materials: Azobenzene-Containing Polymers and Liquid Crystals, John Wiley & Sons, Hoboken, NJ, 2009.
  • [44] K.G. Yager, C.J. Barrett, Novel photo-switching using azobenzene functional materials, J. Photochem. Photobiol. A 182 (2006) 250–261, http://dx.doi.org/ 10.1016/j.jphotochem.2006.04.021.
  • [45] N. Böhm, A. Materny, W. Kiefer, H. Steins, M.M. Müller, G. Schottner, Spectroscopic investigation of the thermal cis-trans isomerization of disperse red 1 in hybrid polymers, Macromolecule 29 (1996) 2599–2604, http://dx.doi. org/10.1021/ma951238o.
  • [46] D.G. Whitten, P.D. Wildes, J.G. Pacifici, G. Irick Jr., Solvent and substituent effects on the thermal isomerization of substituted azobenzenes. A flash spectroscopic study, J. Am. Chem. Soc. 93 (1971) 2004–2008, http://dx.doi. org/10.1021/ja00737a027.
  • [47] J. Garcia-Amorós, A. Sánchez-Ferrer, W.A. Massad, S. Nonell, D. Velasco, Kinetic study of the fast thermal cis-to-trans isomerisation of para-, ortho- and polyhydroxyazobenzenes, Phys. Chem. Chem. Phys. 12 (2010) 13238–13242, http://dx.doi.org/10.1039/c004340k.
  • [48] J. Garcia-Amoros, H. Finkelmann, D. Velasco, Role of the local order on the thermal cis-to-transisomerisation kinetics of azo-dyes in nematic liquid crystals, Phys. Chem. Chem. Phys. 13 (2011) 11233–11238, http://dx.doi.org/ 10.1039/C1CP20280D.
  • [49] J. Garcia-Amoros, D. Velasco, Understanding the fast thermal isomerisation of azophenols in glassy and liquid-crystalline polymers, Phys. Chem. Chem. Phys. 16 (2014) 3108–3114, http://dx.doi.org/10.1039/C3CP54519A.
  • [50] M.V. Srinivasan, P. Kannan, Photo-switching and nonlinear optical behaviors of center linked bent-core azobenzene liquid crystalline polymers, J. Mater. Sci. 46 (2011) 5029–5043, http://dx.doi.org/10.1007/s10853-011-5423-x.
  • [51] J. Vapaavuori, C.G. Bazuin, A. Priimagi, Supramolecular design principles for efficient photoresponsive polymer-azobenzene complexes, J. Mater. Chem. C 6 (2018) 2168–2188, http://dx.doi.org/10.1039/c7tc05005d.
  • [52] P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, second edition, Clarendon Press - Oxford/ Oxford University Press, New York, USA, 1993, pp. 108–123.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-731046ff-8d40-42b4-83cd-f3fb89c5e869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.