PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault location of distribution network with distributed generation based on Karrenbauer transform and support vector machine regression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As the capacity and scale of distribution networks continue to expand, and distributed generation technology is increasingly mature, the traditional fault location is no longer applicable to an active distribution network and "two-way" power flow structure. In this paper, a fault location method based on Karrenbauer transform and support vector machine regression (SVR) is proposed. Firstly, according to the influence of Karrenbauer transformation on phase angle difference before and after section fault in a low-voltage active distribution network, the fault regions and types are inferred preliminarily. Then, in the feature extraction stage, combined with the characteristics of distribution network fault mechanism, the fault feature sample set is established by using the phase angle difference of the Karrenbauer current. Finally, the fault category prediction model based on SVR was established to solve the problem of a single-phase mode transformation modulus and the indistinct identification of two-phase short circuits, then more accurate fault segments and categories were obtained. The proposed fault location method is simulated and verified by building a distribution network system model. The results show that compared with other methods in the field of fault detection, the fault location accuracy of the proposed method can reach 98.56%, which can enhance the robustness of rapid fault location.
Rocznik
Strony
461--481
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University China
Bibliografia
  • [1] Sachin S., Niazi K.R., Verma K., Tanuj R., Impact of battery energy storage, controllable load and network reconfiguration on contemporary distribution network under uncertain environment, IET Generation, Transmission and Distribution, vol. 14, no. 21, pp. 4719–4727 (2020), DOI: 10.1049/iet-gtd.2020.0369.
  • [2] Jia K., Ren Z.F., Li L., Xuan Z. W., Thomas D., Steentjes S., High-frequency transient comparison based fault location in distribution systems with DGs, IET Generation, Transmission & Distribution, vol. 11, no. 16, pp. 4068–4077 (2017), DOI: 10.1049/iet-gtd.2017.0426.
  • [3] Liu L., Faulted feeder identification and location for a single line-to-ground fault in ungrounded distribution system based on principal frequency component, Archives of Electrical Engineering, vol. 69, no. 3, pp. 695–704 (2020), DOI: 10.24425/aee.2020.133926.
  • [4] Zhan H. Y., Liu K.Y., Sheng W. X., Meng X. L., Literature Review and Prospects of Fault Diagnosis in Active Distribution Network, High Voltage Engineering, pp. 1–12 (2022), DOI: 10.13336/j.1003-6520.hve.20211604.
  • [5] Liu J., Zhang X. Q., Tong X. Q., Zhang Z.H., Du H. W., Chen Y. K., Fault location for distribution systems with distributed generations, Automation of Electric Power Systems, vol. 37, no. 2, pp. 36–42¸48 (2013), DOI: 10.7500/AEPS201208181.
  • [6] Deng F., Li X.R., Zeng X. J., Li Z. W., Guo J., Tang X., A novel multi-terminal fault location method based on traveling wave time difference for radial distribution systems with distributed generators, Proceedings of the CSEE, vol. 38, no. 15, pp. 4399–4409¸4640 (2018), DOI: 10.13334/j.0258-8013.pcsee.172480.
  • [7] Xie L. W., Li Y., Luo L.F., Chen C., Cao Y. J., Fault location method for distribution networks based on distance matrix and branch coefficient, Proceedings of the CSEE, vol. 40, no. 7, pp. 2180–2191¸2397 (2020), DOI: 10.13334/j.0258-8013.pcsee.182509.
  • [8] He S. M., Yuan Z. Y., Lei J. Y., Xu Q., Lin Y. H., Liu Y. L., Lin X. H., Optimal setting method of inverse time over-current protection for a distribution network based on the improved grey wolf optimization, Power System Protection and Control, vol. 49, no. 18, pp. 173–181 (2021), DOI: 10.19783/j.cnki.pspc.201351.
  • [9] Atencia-De la Ossa J., Orozco-Henao C., Marín-Quintero J., Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids, International Journal of Electrical Power and Energy Systems, vol. 148 (2023), DOI: 10.1016/j.ijepes.2022.108923.
  • [10] Yang F. R., Yu Y. J., Fault diagnosis of distribution network based on time constrained hierarchical fuzzy Petri nets, Power System Protection and Control, vol. 48, no. 2, pp. 99–106 (2020), DOI: 10.19783/j.cnki.pspc.190200.
  • [11] Zhang X. F., Lü F. P., Lü W. C., Zhang Y. Y., Deng F. Q., Research on the on-line locating of single-phase-to-earth fault based on chain table algorithm, Power System Protection and Control, vol. 40, no. 12, pp. 31–34+40 (2012).
  • [12] Dashtdar M., Bajaj M., Fault location in distribution network by solving the optimization problem using genetic algorithm based on the calculating voltage changes, Soft Computing, vol. 26, no. 17, pp. 8757–8783 (2022), DOI: 10.1007/S00500-022-07203-8.
  • [13] Jia K., Li L., Yang Z., Zhao G.K., Bi T. S., Research on Distribution Network Fault Location Based on Bayesian Compressed Sensing Theory, Proceedings of the CSEE, vol. 39, no. 12, pp. 3475–3486 (2019), DOI: 10.13334/j.0258-8013.pcsee.180705.
  • [14] PASAD S., KUMAR D. M. V., Trade-offs in PMU and IED deployment for active distribution state estimation using multi-objective evolutionary algorithm, IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 6, pp. 1298–1307 (2018), DOI: 10.1109/TIM.2018.2792890.
  • [15] Pinte B., Quinlan M., Reinhard K., Low voltage micro-phasor measurement unit (𝜇PMU), In Proceedings of the 2015 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, pp. 1–4 (2015), DOI: 10.1109/PECI.2015.7064888.
  • [16] Zhang J. L., Gao Z. J., Wang Z. Y., Sun X. R. et al., Fault Location Method for Active Distribution Based on Finite 𝜇PMU, Power System Technology, vol. 44, no. 7, pp. 2722–2731 (2020), DOI: 10.13335/j.1000-3673.pst.2019.2607.
  • [17] Rai P., Londhe N. D., Raj R., Fault classification in power system distribution network integrated with distributed generators using CNN, Electric Power Systems Research, p. 192, 106914 (2021), DOI: 10.1016/j.epsr.2020.106914.
  • [18] Meng Z. C., Du W. J., Wang H. F., Distribution Network Fault Area Location Based on Deep Convolution Neural Network with Transfer Learning, Southern Power System Technology, vol. 13, no. 7, pp. 25–33 (2019), DOI: 10.13648/j.cnki.issn1674-0629.2019.07.004.
  • [19] Mo H. J., Peng Y. G., Wei W., SR-GNN Based Fault Classification and Location in Power Distribution Network, Energies 16, vol. 60, no. 1, 433 (2023), DOI: 10.3390/en16010433.
  • [20] Li J. W., Wang X.J., He J. H., Zhang Y. J., Zhang D. H., Distribution network fault location based on graph attention network, Power System Technology, vol. 45, no. 6, pp. 2113–2121 (2021), DOI: 10.13335/j.1000-3673.pst.2020.2222.
  • [21] Cai B., Huang L., Xie M., Bayesian Networks in Fault Diagnosis, IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2227–2240 (2017), DOI: 10.1109/TII.2017.2695583.
  • [22] Wang X.J., Ren X.Y., He J.H. et al., Distribution network fault location based on 𝜇PMU information, Power System Technology, vol. 43, no. 3, pp. 810–818 (2019), DOI: 10.13335/j.1000-3673.pst.2018.2963.
  • [23] Von Meier A., Stewart E., McEachern A. et al., Precision micro-synchro phasors for distribution systems: a summary of applications, IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2926–2936 (2017), DOI: 10.1109/TSG.2017.2720543.
  • [24] Li L., Lu D.K., Guo J.N., Cross-correlation Fault Positioning Based on Phase-mode Transformation, Guangdong Electric Power, vol. 27, no. 10, pp. 68–73 (2014), DOI: 10.3969/j.issn.1007-290X.2014.10.014.
  • [25] Niu G., Zhou L., Pei W. et.al., Fault location method for low voltage active distribution network based on phase-angle differences of the Clark currents, Proceedings of the CSEE, vol. 35(S), pp. 15–24 (2015), DOI: 10.13334/j.0258-8013.pcsee. 2015.S.003.
  • [26] Stavros P., Nikos H., Kai S., A benchmark low voltage microgrid network, CIGRE Symposium: Power Systems with Dispersed Generation: Technologies, Impacts on Development, Operation and Performances, Athens, Greece (2005).
  • [27] Hu W., Li Y., Cao Y. J. et al., Fault identification based on LOF and SVM for smart distribution network, Electric Power Automation Equipment, vol. 36, no. 6, pp. 25–33 (2016), DOI: 10.16081/j.issn.1006Ł-6047.2016.06.002.
  • [28] Liu K .Y., Dong W.J., Xiao R. W., Wei J., Zhao W., Fault identification and location of active distribution network based on SVM classification of voltage data, Power System Technology, vol. 45, no. 1, pp. 2369–2379 (2021), DOI: 10.13335/j.1000-3673.pst.2020.0516.
  • [29] Zhou Z. H., Machine learning, Beijing, China: Tsinghua University Press, pp. 121–137 (2016).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-730e58a2-f9d4-47f2-bc56-26dee3e3a7d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.