Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents the preparation of composite casts made using the technology of precise casting by the method of melted models. The composite was reinforced with the ceramic sinter from Al2O3 particle shaped in a printed polystyrene female mould, which was fired together with precured ceramics. The resulting ceramic preform, after being saturated with paraffin and after the filling system is installed, was filled with liquid moulding sand and fired together with the mould. The reinforcement was saturated by means of the counter-pressure exerting action on the metal column, being a resultant of pressures inside and outside the chamber. The preliminary assessment showed no apparent defects in the shape of the cast. The casting was measured and the figures were compared with the dimensions of the matrix in which the reinforcing preform was made, the preform after firing and after saturation with paraffin. The results were presented in a table and dimensional deviations were determined. The composite casting was subjected to metallographic tests, which excluded any porous defects or damage to the reinforcement. It can therefore be said that, according to the predictions resulting from the previous calculations, the pressure values used allowed for complete filling of the reinforcement capillaries. The proposed method is therefore suitable for the preparation of precision composite castings with complex shapes.
Czasopismo
Rocznik
Tom
Strony
49--54
Opis fizyczny
Bibliogr. 28 poz., fot., rys., tab.
Twórcy
autor
- Poznan University of Technology, Institute of Materials Technology, Poznań, Poland
autor
- Maritime University of Szczecin, Faculty of Marine Engineering, Szczecin, Poland
autor
- Poznan University of Technology, Institute of Materials Technology, Poznań, Poland
Bibliografia
- [1] Potoczek, M., Śliwa, R.E., Myalski, J. & Śleziona, J. (2009). Metal-ceramic interpenetrating composites produced by pressure infiltration of metal into ceramic foam. Rudy i Metale Nieżelazne. 54(11), 688-692.
- [2] Campbell, J. (2015). Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design. Elsevier Science.
- [3] Łągiewka, M. & Konopka, Z. (2015). Properties of AlSi9Mg Alloy Matrix Composite Reinforced with Short Carbon Fibre after Remelting. Archives of Foundry Engineering. 15(3), 39-40.
- [4] Gawdzińska, K., Bryll, K., Nagolska, D. (20016). Influence of heat treatment on abrasive wear resistance of silumin matrix composite castings. Archives of Metallurgy and Materials. 61(1), 177-182. DOI: 10.1515/amm-2016-0031.
- [5] Drenchev, L., Sobczak, J.J. (2013). Formation of Graded Structures and Properties in Metal Matrix Composites by use of Electromagnetic Field. Foundry Research Institute.
- [6] Aybarc, U., Dispinar, D. & Seydibeyoglu, M.O. (2018). Aluminum Metal Matrix Composites with SiC, Al2O3 and Graphene – Review. Archives of Foundry Engineering. 18(2), 5-10. DOI: 10.24425/122493.
- [7] Karvanis, K., et al. (2016). Production and mechanical properties of Al-SiC metal matrix composites. in IOP Conference Series: Materials Science and Engineering. IOP Publishing.
- [8] Tan, E., Tarakcilar, A. & Dispinar, D. (2015). The effect of melt quality and quenching temperature on the Weibull distribution of tensile properties in aluminium alloys. Materialwissenschaft und Werkstofftechnik. 46(10), 1005-1013.
- [9] Dolata, A.J. (2016). Centrifugal infiltration of porous ceramic preforms by the liquid Al alloy – theoretical background and experimental verification, Archives of Metallurgy and Materials. 61(1), 411-418. DOI: 10.1515/amm-2016-0075.
- [10] Dolata, A.J., Dyzia, M. & Jaegermann, A. (2017). Structure and physical properties of alumina ceramic foams designed for centrifugal infiltration process. Composites Theory and Practice. 17(3), 136-143.
- [11] Naplocha, K. (2013). Composite materials reinforced with preforms produced in the high-temperature synthesis process in the microwave field. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej. (in Polish).
- [12] Dolata, A.J. (2014). Structure of aluminium matrix composite with ceramic preform obtained by centrifugal infiltration process, in Technologies and Properties of Modern Utility Materials XXI. Solid State Phenomena. 212, 7-10. DOI:10.4028/www.scientific.net/SSP.212.7.
- [13] Grabian, J. (2001). Saturating the reinforcement of ceramic unordered fibers during the production of castings made of metal composites. Szczecin: WSM w Szczecinie. (in Polish).
- [14] Jackowski, J. (2002). Gas occlusions in casted saturated composites. Composites. 2(4), 180-184. (in Polish).
- [15] Gawdzińska, K., Chybowski, L. & Przetakiewicz, W. (2015), Proper matrix-reinforcement bonding in cast metal matrix composites as a factor of their good quality. Archives of Civil and Mechanical Engineering. 16(3), 553-563. DOI: 10.1016/j.acme.2015.11.004.
- [16] Chybowski, L., Idziaszczyk, D. & Wiśnicki, B. (2014). A Comparative Components Importance analysis of A Complex Technical System with The Use of Different Importance Measures. Systems Supporting Production engineering. Review of Problems and Solutions. 23-33.
- [17] Chybowski, L. & Żółkiewski, S. (2015) Basic reliability structures of complex technical systems. New Contributions in Information Systems and Technologies. Advances in Intelligent Systems and Computing. 354, 333-342. DOI: 10.1007/978-3-319-16528-8_31.
- [18] Kaczyński, P., Ptak, M, Fernandes, F.A.O., Chybowski, L., Wilhelm, J. & Alves de Sousa, R.J. (2019). Development and Testing of Advanced Cork Composite Sandwiches for Energy-Absorbing Structures. Materials. 12(5), 697: 1-14, DOI: 10.3390/ma12050697.
- [19] Kucharczyk, A., Naplocha, K. & Tomanik, M.. (2019). Processing of porous NiTi preforms for NiTi/Mg composites. Archives of Metallurgy and Materials. 64(2), 747-752.
- [20] Chybowski, L., Twardochleb, M. & Wiśnicki, B. (2016). Multi-criteria Decision making in Components Importance Analysis applied to a Complex Marine System. Naše more. 63(4), 264-270. DOI: 10.17818/NM/2016/4.3.
- [21] Rahman, M.H. & Al Rashed, H.M. (2014). Characterization of silicon carbide reinforced aluminum matrix composites. Procedia Engineering. 90, 103-109.
- [22] Binner, J., Chang, H. & Higginson, R. (2009), Processing of ceramic-metal interpenetrating composites. Journal of the European Ceramic Society. 29, 837-842.
- [23] Mitrašinović, A.M, & Robles Hernández, F.C. (2012). Determination of the growth restriction factor and grain size for aluminum alloys by a quasi-binary equivalent method. Mater Sci Eng A.540, 63-9.
- [24] Mattern, A., Huchler, B., Staudenecker, D., Oberacker, R., Nagel, A. & Hoffman, M.J. (2004). Preparation of interpenetrating ceramic-metal composites. Journal of the European Ceramic Society. 24, 3399-3408.
- [25] Kawalec, M., Przestacki, D., Bartkowiak, K., Jankowiak, M. (2008). Laser assisted machining of aluminium composite reinforced by SiC particle. ICALEO 2008 - 27th International Congress on Applications of Lasers and Electro-Optics, Congress Proceedings, (pp. 895-900).
- [26] Przestacki, D., Majchrowski, R. & Marciniak-Podsadna, L. (2015). Experimental research of surface roughness and surface texture after laser cladding. Applied Surface Science. 388, Part A, 420-423. DOI: 10.1016/j.apsusc.2015.12.093.
- [27] Bartkowska, A., Pertek, A., Popławski, M., ,Przestacki, D., Miklaszewski, A. (2015). Effect of laser modification of B-Ni complex layer on wear resistance and microhardness. Optics and Laser Technology. 72, 116-124.
- [28] Chybowski, L. & Kuźniewski, B. (2015). An overwiew of methods for wave energy conversion. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie. 41(113), 17-23. DOI: 10.17402/002.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-730be4ab-5b6c-4908-9eae-340fc12a138c