Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we propose sensorless backstepping control of a double-star induction machine (DSIM). First, the backstepping approach is designed to steer the flux and speed variables to their references and to compensate uncertainties. Lyapunov”s theory is used and it demonstrates that the dynamic tracking of trajectories tracking is asymptotically stable. Second, unfortunately, this law control called sophisticated is a major problem which leads to the necessity of using a mechanical sensor (speed, load torque). This imposes an additional cost and increases the complexity of the montage. In practice, this variable is unknown and its measurement is expensive. To restrain this problem we estimate speed and load torque by using a Luenberger observer (LO). Simulation results are provided to illustrate the performance of the proposed approach in high and low variable speeds and load torque disturbance.
Czasopismo
Rocznik
Tom
Strony
101--116
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wz.
Twórcy
autor
- Research Laboratory of Electrical Engeneering, University of M’sila BP 166, Ichbilia 28000, Algeria
autor
- Research Laboratory of Electrical Engeneering, University of M’sila BP 166, Ichbilia 28000, Algeria
- Signals & Systems Laboratory, Institute of Electrical and Electronic Engineering Boumerdes, Algeria
autor
- Research Laboratory of Electrical Engeneering, University of M’sila BP 166, Ichbilia 28000, Algeria
Bibliografia
- [1] Drozdowski P., Speed control of multiphase cage induction motors incorporating supply sequence, Archives of Electrical Engineering, vol. 63, no. 4, pp. 511–534 (2014).
- [2] Amimeur H., Abdessemed R., A Sliding Mode Control Associated to the Field Oriented Control of Dual Stator Induction Motor Drives, Revue des Energies Renouvelables, vol. 11, no. 2, pp. 317-327 (2008).
- [3] Fischle K., Schroder D., An improved stable adaptive fuzzy control method, IEEE transactions on fuzzy systems, vol. 7, no. 1, pp. 27–40 (1999).
- [4] Saghafinia A., Wooi P.H., Adaptive fuzzy sliding mode control into chattering free IM drive, IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 692–701 (2015).
- [5] Tir Z., Youcef S., Fuzzy logic field oriented control of double star induction motor drive, Electrical Engineering, vol. 99, no. 2, pp. 495–503 (2017).
- [6] Youb L., Sebti B., Design of an adaptive fuzzy control system for dual star induction motor drive, Advances in Electrical and Computer Engineering, vol. 18, no. 3, pp. 37–44 (2018).
- [7] Akkari N., Chaghi A., Speed control of doubly star induction motor using direct torque DTC based to on model reference adaptive control (MRAC), International Journal of Hybrid Information Technology, vol. 7, no. 2, pp. 19–28 (2014).
- [8] Brandstetter P., Sensorless control of DC drive using artificial neural network, Acta Polytechnica Hungarica, vol. 11, no. 10, pp. 5–20 (2014).
- [9] Ashfaq M., Wang D., Modeling and backstepping based nonlinear control strategy for a 6 DOF quadrotor helicopter, Chinese Journal of Aeronautics, vol. 21, no. 3, pp. 261–268 (2008).
- [10] Bouadi H., Bouchoucha M., Sliding mode control based on backstepping approach for an UAV type quadrotor, International Journal of Mechanical, Aerospace, Industrial, vol. 1, no. 2, pp. 39–44 (2007).
- [11] Horch M., Boumediene A., Nonlinear integral backstepping control for induction motor drive with adaptive speed observer using super twisting strategy, Electrotehnică, electronică, automatică, vol. 64, no. 1, pp. 24–32 (2015).
- [12] Chaouch S., Backstepping control design of sensorless speed induction motor based on MRAS technique, International Review of Electrical Engineering, vol. 2, no. 1, pp. 738–744 (2007).
- [13] Benakcha M., Benalia L., Backstepping control of dual stator induction generator used in wind energy conversion system, International Journal of Renewable Energy Research, vol. 8, no. 1, pp. 385–395 (2018).
- [14] Hadiouche D., Razik H., Study and simulation of space vector PWM control of double star induction motors, 7th IEEE International Power Electronics Congress, Technical Proceedings, Acapulco, Mexico, pp. 42–47 (2000).
- [15] Sadouni R., Meroufel A., Performances comparative study of field oriented control (FOC) and direct torque control (DTC) of dual three phase induction motor, International Journal Of Circuits, Systems and Signal Processing, vol. 6, no. 2, pp. 163–170 (2012).
- [16] Mohamed H., Boumediene A., Baghli L., Nonlinear integral backstepping control for induction motor drive with adaptive speed observer using super twisting strategy, Electrotehnica, Electronica, Automatica, vol. 64, no. 1, pp. 24–32 (2016).
- [17] Laoufi A., Hazzab A., Direct field oriented control using backstepping technique for induction motor speed control, International Journal of Applied Engineering Research, vol. 1, no. 1, pp. 37-50 (2006).
- [18] Zaafouri A., Ben Regaya C., Chaari A ., Backstepping approach applied for control and on-line adaptation of the rotor resistance, World Applied Sciences Journal, vol. 28, no. 8, pp. 1120–1126 (2013).
- [19] Theocharis J., Petridis V., Neural network observer for induction motor control, IEEE Control Systems Magazine, vol. 14, no. 2, pp. 26–37 (1994).
- [20] Mabrouk J., Kamel J., Yassine K., A luenberger state observer for simultaneous estimation of speed and rotor resistance in sensorless indirect stator flux orientation control of induction motor drive, IJCSI International Journal of Computer Science, vol. 8, no. 6, pp. 116–125 (2011).
- [21] Jie Y., Wencen W., An adaptive luenberger observer for speed sensorless estimation of induction machines, Annual American Control Conference (ACC), Milwaukee, WI, USA, pp. 307–312 (2018).
- [22] Davila J., Fridman L., Second-order sliding-mode observer for mechanical systems, IEEE Transactions on Automatic Control, vol. 50, no. 11, 1785–1789 (2005).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73096e8d-b449-461a-9733-df46886c967c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.