Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Climate change is nowadays one of the most important problems that affects urban areas, where over half of the population lives. Due to the continuously growing population, significant number of citizens will be affected by its impact. For this reason, one of the steps to adapt cities to changing climate conditions is the implementation of adaptation strategies based on blue-green infrastructure elements. In this article, the existing conditions of two selected public spaces in Lodz (Poland) and the impact of the proposed modernization projects were examined. The aim of the study was to determine the extent to which the proposed projects will improve microclimatic conditions and thermal comfort, and to select a more efficient urban planning option. Simulations of meteorological conditions and thermal comfort for representatives of four groups of space users were done by using the ENVI-met program. This study reveals the relevance of the thermal comfort subject, especially for people over 65 years of age, due to the increased sensations of elderly during high temperatures and the increasing participation of this demographic group in the population of Lodz.
Czasopismo
Rocznik
Tom
Strony
129--145
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
autor
- PhD; Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Politechniki 6, 93-590 Lodz, Poland
autor
- Assistant Prof.; Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Politechniki 6, 93-590 Lodz, Poland
autor
- MSc; Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, Politechniki 6, 93-590 Lodz, Poland
Bibliografia
- [1] Kassenberg, A., Szymalski, W. & Świerkula, E. (2019). Poradnik adaptacji miasta do zmiany klimatu. Warszawa: Instytut na rzecz Ekorozwoju.
- [2] Deuster, C., Kajander, N., Muench, S., Natale, F., Nedee, A., Scapolo, F., Ueffing, P., & Vesnic Alujevic, L. (2023). Demography and Climate Change. EUR 31512 EN. Luxembourg: Publications Office of the European Union.
- [3] Koch, F. (2021). Cities as transnational climate change actors: applying a Global South perspective. Third World Quaterly, 42(9), 2055-2073.
- [4] Knowlton, K., Rosenthal, J. E., Hogrefe, C., & Lynn, B. (2004). Assessing ozon-related health impacts under a changing climate. Environmental Health Perspectives, 112(15), 1557-1563.
- [5] Januchta-Szostak, A. (2021). Klimat miasta: specyfika, zagrożenia, adaptacja. Przegląd Komunalny, 9(360), 72-76.
- [6] Przesmycka, N., Kwiatkowski, B. & Kozak, M. (2022). The Thermal Comfort Problem in Public Space during the Climate Change Era Based on the Case Study of Selected Area in Lublin City in Poland. Energies, 15(6504), [1-26].
- [7] Battista, G., de Lieto Vollaro, R. & Zinzi, M. (2019). Assessment of urban overheating mitigation strategies in a square in Rome, Italy. Solar Energy, 180, 608-621.
- [8] Chen, L. & Ng, E. (2013). Simulation of the effect of downtown greenery on thermal comfort in subtropical climate using PET index: A case study in Hong Kong. Architectural Science Review, 56(4), 297-305.
- [9] Alves, F. M., Gonçalves, A. & del Caz Enjuto, M. R. (2022). The Use of Envi-Met for the Assessment of Nature-Based Solutions’ Potential Benefits in Industrial Parks - A Case Study of Argales Industrial Park (Valladolid, Spain). Infrastructures, 7(85), [1-22].
- [10] Bochenek, A. & Klemm, K. (2020). Assessment of human thermal comfort in street canyons. An example of typical structures (Lodz, Poland). Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 9(1), 69-76.
- [11] Degórska, B. (2014). Wrażliwość i adaptacja dużych miast do zmian klimatu w kontekście wzrostu temperatury powietrza. Biuletyn Polska Akademia Nauk, 254, 27-46.
- [12] Januchta-Szostak, A. (2020). Błękitno-zielona infrastruktura jako narzędzie adaptacji miast do zmian klimatu i zagospodarowania wód opadowych. Zeszyty Naukowe Politechniki Poznańskiej. Architektura, Urbanistyka, Architektura Wnętrz, 3, 37-74.
- [13] Herath, H. M. P. I. K., Halwatura, R. U., & Jayasinghe, G. Y. (2018). Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry & Urban Greening, 29, 212-222.
- [14] Hoelscher, M., Nehls, T., Janicke, B., & Wessolek, G. (2016). Quantifying cooling effects of façade greening: Shading, transpiration and insulation. Energy and Buildings, 114, 283-290.
- [15] Li, Z., Chow, D. H. C., Yao, J., Zheng, X., & Zhao, W (2019). The effectiveness of adding horizontal greening and vertical greening to courtyard areas of existing buildings in the hot summer cold winter region of China: A case study for Ningbo. Energy and Buildings, 196, 227-239.
- [16] Aboelata, A., & Sadoudi, S. (2020). Evaluating the effect of trees on UHI mitigation and reduction of energy usage in different built up areas in Cairo. Building and Environment, 168, 1-13.
- [17] Zhang, L., Deng, Z., Liang, L., Zhang, Y., Meng, Q., Wang, J., & Santamouris, M. (2019). Thermal behavior of a vertical green façade and its impact on the indoor and outdoor thermal environment. Energy and Buildings, 204(109502), [1-14].
- [18] Gargari, C., Bibbiani, C., Fantozzi, E, & Campiotti, C. A. (2016). Simulation of the thermal behaviour of a building retrofitted with a green roof: optimization of energy efficiency with reference to Italian climatic zones. Agriculture and Agricultural Science Procedia, 8, 628-636.
- [19] Shaheen, A. M. A., Sabry, H. M. K., & El Dessoqy Faggal, A. A. (2020). Double Skin Green Façade in Workplace for Enhancing Thermal Performance in Greater Cairo. Engineering Research Journal, 168, A1- A12.
- [20] Matzarakis, A., & Mayer, H. (1996). Another Kind of Environmental Stress: Thermal Stress. WHO Colloborating Centre for Air Quality Management and Air Pollution Control. Newsletters, 18, 7-10.
- [21] Ng, E., Chen, L., Wang, Y. & Yuan, C. (2012). A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 47, 256-271.
- [22] Acero, J. A., Koh, E. J. Y., Li, X. X., Ruefenacht, L. A., Pignatta, G. & Norford, L. K. (2019). Thermal impact of the orientation and height of vertical greenery on pedestrian in a tropical area. Building Simulation, 12, 973-984.
- [23] Sozen, І. & Oral, G. K. (2019). Outdoor thermal comfort in urban canyon and courtyard in hot arid climate: A parametric study based on the vernacular settlement of Mardin. Sustainable Cities and Society, 48(101398), [1-15].
- [24] Middel, A., Chhetri, N. & Quay, R. (2015). Urban forestry and cool roofs: Assessment of heat mitigation strategies in Phoenix residential neighborhoods. Urban Forestry & Urban Greening, 14(1), 178-186.
- [25] Nastran, M., Kobal, M. & Eler, K. (2019). Urban heat islands in relation to green land use in European cities. Urban Forestry & Urban Greening, 37, 33-41.
- [26] Eumorfopoulou, E. & Aravantinos, D. (1998). The contribution of a planted roof to the thermal protection of buildings in Greece. Energy and Buildings, 27, 29-36.
- [27] Wong, N. H., Chen, Y., Ong, C. L. & Sia, A. (2003). Investigation of thermal benefits of rooftop garden in the tropical environment. Energy and Buildings, 35, 35-364.
- [28] Saiz, S., Kennedy, K., Bass, B. & Pressnail, K. (2006). Comparative Life Cycle Assessment of Standard and Green Roofs. Environmental Science & Technology, 40, 4312-4316.
- [29] Morakinyo, T. E. & Lam, Y. F. (2016). Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon’s microclimate and thermal comfort. Buildings and Environment, 103, 262-275.
- [30] Tsoka, S., Leduc, T. & Rodler, A. (2021). Assessing the effects of urban trees on building cooling energy needs: The role of foliage density and planting pattern. Sustainable Cities and Society, 65(102633), [1-16]
- [31] Plan adaptacji do zmian klimatu miasta Łodzi do roku 2030.
- [32] Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., & Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy and Buildings, 33, 719-729.
- [33] Ragab, A., & Abdelrady, A. (2020). Impact of green roofs on energy demand for cooling in Egyptian buildings. Applied Sciences, 12(14), 1-13.
- [12] Assimakopoulos, M. N., De Masi, R. F., Rossi, F., Papadaki, D., & Ruggiero, S. (2020). Green Wall Design Approach Towards Energy Performance and Indoor Comfort Improvement: A Case Study in Athens. Sustainability, 12(3772), [1-23].
- [35] Mabdeh, S., Al Radaideh, T., & Hiyari, M. (2020). Enhancing thermal comfort of residential buildings through dual functional passive system (solar-wall). Journal of Green Building, 16(2), 139-161.
- [36] Portal REWITALIZACJA (2024). Stary Rynek - Rewitalizacja. Retrieved from: https://rewitalizacja.uml.lodz.pl/dzialania/4-okolice-placu-wolnosci-i-starego-rynku/stary-rynek/
- [37] Białas, K. (2023). Wkrótce ruszają prace! Stary Rynek w Łodzi po remoncie będzie zielony! Retrieved from: https://www.whitemad.pl/stary-rynek-w-lodzi-miasto-zmienia-projekt-mniej-betonu-wiecej-zieleni/
- [38] Rewitalizacja Starego Rynku w Łodzi. Odkopano ponad tysiąc artefaktów (2023). Retrieved from: https://turystyka.wp.pl/rewitalizacja-starego-rynku-w-lodzi-odkopano-ponad-tysiac-artefaktow-6804424151059168a
- [39] Skanska - informacja prasowa (2023). Skanska zakończyła przebudowę placu Dąbrowskiego w Łodzi. Retrieved from: https://www.skanska.pl/o-skanska/media/informacje-prasowe/48649/Skanska-zakonczyla-przebudowe-placu-Dabrowskiego-w-Lodzi/
- [40] Rubaszewska, M. (2023). Tak będzie wyglądał plac Dąbrowskiego w Łodzi. Retrived from: https://expressilustrowany.pl/tak-bedzie-wygladal-plac-dabrowskiego-w-lodzi-wizualizacje/ar/c1-17174793
- [41] https://earth.google.com/
- [42] ŁÓDŹ BUDUJE, ZIELONA ŁÓDŹ (2022). Jak zmieni się Plac Dąbrowskiego po remoncie? Wybierz najlepszy projekt!. Retrived from: https://lodz.pl/artykul/jak-zmieni-sie-plac-dabrowskiego-po-remoncie-wybierz-najlepszy-projekt-sonda-54000/
- [43] Bochenek, A. & Klemm, K. (2018). Assessment of the impact of spatial development changes on thermal comfort experienced by man in the external environment. IOP Conference Series: Materials Science and Engineering, 415(012022), [1-8].
- [44] Bochenek A. (2022). The Influence of Urban Forms and Adaptation Strategies on Microclimate and Human Thermal Comfort (PhD thesis, Lodz University of Technology). Poland, Lodz.
- [45] ASHRAE (2017). Standard 55 - Thermal environmental conditions for human occupancy. American Society of Heating, Refrigeration and Air Conditioning Engineers. USA, GA, Atlanta.
- [46] Sudoł-Szkopińska, I. & Chojnacka, A. (2007). Określenie warunków komfortu termicznego w pomieszczeniach za pomocą wskaźników PMV i PPD. Bezpieczeństwo pracy, 5, 19-23.
- [47] Fanger, P. O. (1973). Assessment of man’s thermal comfort in practice. British Journal of Industrial Medicine, 30, 313-324.
- [48] De Freitas, C. R. & Grigorieva, E. A. (2017). A comparison and appraisal of a comprehensive range of human thermal climate indices. International Journal of Biometeorology, 61 (3), 487-512.
- [49] Deb, C. & Alur, R. (2010). The significance of Physiological Equivalent Temperature (PET) in outdoor thermal comfort studies. International Journal of Engineering Science and Technology, 2(7), 2825-2828.
- [50] Basarin, B., Lukić, T. & Matzarakis, A. (2020). Review of biometeorology of heatwaves and warm extremes in Europe. Atmosphere, 11(1276), 1-21.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7304ac10-30bb-4492-b987-b473ddc2f654
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.