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Abstract: This article presents the synthesis of a neural motion control system of a robot caused by disturbances of constraints limiting  
the movement, which are the result of flexibility and disturbances of the contact surface. A synthesis of the control law is presented,  
in which the knowledge of the robot's dynamics and the parameters of a susceptible environment is not required. Moreover, the stability  
of the system is guaranteed in the case of an inaccurately known surface of the environment. This was achieved by introducing  
an additional module to the control law in directions normal to the surface of the environment. This additional term can be interpreted  
as the virtual viscotic resistance and spring force acting on the robot. This approach ensured the self-regulation of the robot’s interaction 
force with the compliant environment, limiting the impact of the geometrical inaccuracy of the environment. 
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1. INTRODUCTION 

The development of industrial robotics is related to robots per-
forming more and more complex tasks that often require simulta-
neous execution of a desired trajectory and the interaction force of 
the end effector with the environment [1-4]. This refers to, among 
other, tasks regarding the robotisation of mechanical processing. 
The performance of the above-mentioned tasks is possible with 
simultaneous movement in one direction and exerting forces on 
directions perpendicular to them [5-7]. Currently, two basic control 
strategies are widespread in relation to robotisation of machining 
[8]. In the first strategy, the desired interaction force is maintained 
at a constant speed of movement, while the motion path of the 
robot end effector automatically adjusts to the shape of the con-
tact surface. In the second control strategy [8], the robot end 
effector moves along the desired trajectory, regardless of the 
shape of the surface. A variable value is the speed, which is 
reduced with increasing resistance to motion resulting from the 
surface allowance. However, the force is not a controlled value. 

The main disadvantage of the discussed solutions is that the 
control algorithm takes into account only one criterion, which is 
either minimising the error of the interaction force or minimising 
the deviation from the desired motion path. However, in some 
applications, it is necessary to consider both criteria simultaneous-
ly. This applies, for example, to the machining of castings, which 
have a large change in shape due to the phenomenon of foundry 
shrinkage [9]. Another example of difficulties is the processing of 
thin-walled elements, which show high compliance and deforma-
bility during machining [10]. Then, taking into account only the 
pressure force or only the desired path of movement of the robot 
end effector leads to large errors in the shape of the machined 
surface. An important and current issue is the development of a 
robot control strategy that will ensure the appropriate quality of 
machining, despite the presence of unmodelled effects, such as 

inaccurately known geometry of the workpieces and their flexibility 
[11,12]. 

This paper deals with the synthesis of the control system in 
cases of disturbances in the robot’s contact with the environment, 
which result from the flexibility of the surface and the inaccuracy 
of its description. This article is an extension and development of 
the topics presented in [6,7,10]. In the paper [10], an adaptive 
control system was used, which was stable in the case of contact 
of the robot with a flexible surface, and the algorithm did not re-
quire the knowledge of the surface elasticity coefficient. The arti-
cle [6] solves a similar problem with the use of neural networks, 
which was aimed at eliminating the need to know the dynamics 
model of the robot–environment system. In [7], in addition to the 
flexibility of the contact surface, the possibility of its inaccuracy 
was taken into account, and the control problem was solved with 
the use of an adaptive system. Finally, this article deals with 
control taking into account the flexibility and inaccuracy of the 
contact surface, and the control system uses an artificial neural 
network in order to eliminate the need to know the mathematical 
model of the robot–environment system. 

In order to solve the problem, a cooperative control strategy 
was used, combining two elementary strategies. One of them 
aims to achieve the desired force and the other aims to implement 
the desired path of motion of the end effector. In the absence of 
surface inaccuracy, only the first strategy is active. Otherwise, the 
second strategy is activated with the first strategy running simul-
taneously. This leads to the “competition” of the two strategies, 
which allows the control algorithm to include two criteria, rather 
than simply switching between strategies. 

2. LITERATURE REVIEW 

The issue of position–force control of robots has its genesis in 
the practical applications of robots for the implementation of pro-
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cesses in which the interaction between the robot and the envi-
ronment is important. The most common applications where this 
interaction is crucial are robotic machining processes, such as 
milling [13,14], deburring [9,15], grinding [16,17] and polishing 
[2,18]. Implementation of the aforementioned processes requires 
the movement of the tool along a given path, which results from 
the shape of the machined surface, while exerting pressure on 
this surface, ensuring contact between the tool and the workpiece. 
Control algorithms that simultaneously perform position and force 
control belong to the hybrid group [19,20]. 

An important element of designing a robot control algorithm 
for such a task is to formulate an appropriate model of the robot–
environment system. In general, various classes of models of both 
robots and the environment with which the robot interacts are 
known in the literature. Depending on the purpose of modelling 
and the significance of the phenomena, the following robot models 
are distinguished: robots as connections of rigid bodies without 
the flexibility of joints [21], robots as connections of rigid bodies 
with the flexibility of joints [22,23] and robots with the flexibility of 
both joints and links [24,25,26]. Similarly, there are many ways to 
model the environment with which the robot physically interacts. 
The simplest models describe the interaction surface as rigid and 
smooth [27]. In justified cases, flexibility and roughness of surface 
are taken into account [6,7]. In more complex analyses, surface 
models are used, described by differential equations that take into 
account the mass, damping and stiffness of the object with which 
the robot is in contact [28]. In the control synthesis issues, the 
models contain the most important features of robot–environment 
systems and, at the same time, are simple enough to be used to 
demonstrate the stability of a closed system [27]. 

The formulation of an uncomplicated model of the robot–
environment system allows for the decomposition of the problem 
into a control task on directions tangential to the interaction sur-
face and on normal directions. In tangential directions, the posi-
tional control is responsible for moving the robot tool along the 

path. In normal directions, the interaction force of the robot with 
the surface is controlled. In the position control part, linearisation 
is typically used in the inner loop, and the outer loop uses a PID 
(proportional–integral–derivative), PD (proportional–derivative) or 
PI (proportional–integral) controller. Feedback linearisation can be 
implemented, e.g., in the form of calculated torque [27], adaptive 
control [28], neural control [29], fuzzy control [30], neuro-fuzzy 
control [31], reinforcement learning [32] and many others. In the 
part of the system responsible for controlling the force, a simple 
proportional or proportional integral controller is usually used, 
sometimes in the form of a fuzzy controller. 

There is a significant number of works devoted to the use of 
neural networks in the control of robots interacting with the envi-
ronment. Neural networks are used, for example, to compensate 
for the non-linearity of the robot [33] or in the structure of the state 
observer [34]. Numerous works concern the use of fuzzy or neuro-
fuzzy systems in the positional control of robots [31,35]. In order 
to increase the efficiency of controller tuning, advanced methods 
are used, using, for example, genetic algorithms [36] or particle 
swarm optimisation [37]. When it comes to hybrid position–force 
control of robots using neuro-fuzzy systems, the basics of the 
theory are included in the article [38], while more advanced issues 
taking into account the uncertainty of the environment or robot 
kinematics are described in papers [12,39,40]. Among the cited 
works, only [39] presents the results of the experimental verifica-
tion of the solution. Usually, only theoretical and simulation results 
are described, especially for more advanced solutions. 

3. APPROACH TO THE PROBLEM 

The article proposes an approach to the problem of robot con-
trol in interaction with the environment, which consists in combin-
ing two elementary control strategies (Fig. 1).  

 
Fig. 1. Cooperative strategy for robot control
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The task of the first one is to maintain a given interaction force 
at a given speed of movement. As a result, the path of the robot’s 
end effector adjusts itself to the shape of the contact surface. The 
task of the second strategy is to execute the given motion path of 
the robot’s end effector, regardless of the actual shape of the 
machined surface. The cooperative combination of these strate-
gies leads to their interaction in such a way that the goals of each 
strategy are realised in a “soft” manner. The resulting operation of 
the control system may be closer to the first or second strategy 
depending on the adopted cooperation coefficient, which is re-
sponsible for adjusting the priority of force or position execution. 

If the adopted surface model coincides with the actual shape 
of the machined surface, the first elementary strategy (Fig. 2a) is 
implemented, consisting in maintaining the given force in the 
direction normal to the surface. It is obvious that in the event of an 
inaccuracy of the machined surface in relation to the adopted 
surface model, and this is most often the case in fact, the opera-
tion of the elementary force control strategy will be weakened in 
favour of the strategy of minimising the deviation of the robot’s 
end effector from the given path. Thus, neither strategy will be 
fully implemented. The activation of the second strategy causes 
the system to operate in such a way that in the place where the 
real surface was disturbed, virtual elastic and damping forces 
acted on the robot’s end effector, replacing the interaction surface 
(Fig. 2b). Thanks to this, the end effector is attracted to the given 
path of movement. 

(a) 

 
(b) 

 
Fig. 2. The activity of the control strategy in the case of distortions  

in the surface: (a) movement on the surface without distortion 
 and (b) movement on the distorted surface 

The combination of strategies prevents extreme cases of sys-
tem operation and at the same time ensures a smooth transition 
between strategies. It takes place automatically depending on the 
condition of the machined surface, which is an unquestionable 
advantage of the proposed method. 

4. DYNAMICS OF THE ROBOT – FLEXIBLE ENVIRONMENT 
SYSTEM 

In industrial practice, robotic tasks are usually not defined in 
the robot’s configuration space but in a task space, which is usual-

ly Cartesian space. Therefore, in the further discussion, the de-
scription of the robot’s dynamics in the task space was used, 
which has the following form [10]: 

𝐴(𝑞)𝐸�̈� + 𝐻(𝑞, �̇�)𝐸�̇� + 𝐵(𝑞, �̇�) + 𝛹(𝑞, 𝑡) = 𝑈 + 𝜆  (1) 

where 𝑞 ∈ 𝑅𝑛 is the vector of generalised coordinates (joint 

coordinates), 𝜃 ∈ 𝑅𝑚 is the vector of task variables, 𝐴(𝑞) ∈
𝑅𝑚×𝑚 is inertia matrix,  𝐻(𝑞, �̇�) ∈ 𝑅𝑚×𝑚 is the matrix of coeffi-
cients of centrifugal and Coriolis forces, 𝐵(𝑞, �̇�) ∈ 𝑅𝑚  is the 

vector of friction and gravitational forces, 𝛹(𝑞, 𝑡) ∈ 𝑅𝑚 is the 

vector of limited interference, 𝑈 ∈ 𝑅𝑚 is the vector of control 

inputs, 𝜆 ∈ 𝑅𝑚 is the vector of interaction forces, 𝐸 ∈ 𝑅𝑚×𝑚 is 
the matrix of system vulnerability and m is the dimension of the 
task space (it was assumed that m = n). 

The vector of interaction forces can be represented by two 
components: 

𝜆 = [
𝐹𝑒𝜏

𝐹𝑒𝑛
]  (2) 

where 𝐹𝑒𝑛 ∈ 𝑅𝑟  is the vector of normal forces and 𝐹𝑒𝜏𝑅𝑚−𝑟 is 
the vector of tangent forces. Similarly, the vector of task variables 
can be expressed with two components: 

𝜃 = [
𝑐𝜏

𝐹𝑒𝑛
] ∈ 𝑅𝑚  (3) 

where 𝑐𝜏 ∈ 𝑅𝑚−𝑟  is the vector of tangential displacement. De-
composition in Eqs (2) and (3) results from the decomposition of 

the 𝑚-dimensional task space {𝐶} into 𝑟-dimensional normal 
subspace {𝑁} and (𝑚 − 𝑟) – dimensional tangential subspace 
{𝑇}. The vulnerability of the interaction surfaces, which limits the 
movement of the robot’s end effector, is included in the dynamics 
description and the system vulnerability matrix has the following 
form: 

𝐸 = [
𝐼(𝑚−𝑟)×(𝑚−𝑟) 0

0 𝑃𝑒
] ∈ 𝑅𝑚×𝑚  (4) 

where 𝑃𝑒 = 𝑅𝑟×𝑟 is the environmental vulnerability matrix. Eq. 
(1) describes the dynamics of the system in task coordinates 
using kinematic motion parameters in tangent directions and 
forces in normal directions. Such a description facilitates the 
definition and implementation of the task, i.e., the execution of 
movement on the surface with the pressure force. Introducing the 
interaction forces into the vector of task variables enables effec-
tive control of these forces with the use of techniques known in 
the field of position control. The paper [10] provides information on 
the transformation of the dynamic description from the robot’s 
configuration space to the task space. 

5. NEURAL POSITION/FORCE TRACKING CONTROL 

This section proposes a cooperative control strategy, which 
combines two different control strategies on the basis of coopera-
tion (Fig. 3). The purpose of this approach is to supplement one 
strategy by the other in situations in which a given elementary 
strategy applied individually leads to unfavourable behaviour of 
the robot. The neural control algorithm presented in this section 
does not require the knowledge of the system dynamics model. 
Implementation of a cooperative control strategy requires the 
assumption of nominal contact surface geometry (theoretical 
constraints), desired trajectory of motion and force and knowledge 
of the current position of the robot’s end effector. 
Assumption 1: For dynamical system (1), the following trajecto-
ries are given: 
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 limited trajectory of motion of the robot’s end effector in the 

tangential plane 𝑐𝜏𝑑(𝑡) ∈ 𝑅𝑚−𝑟, �̇�𝜏𝑑(𝑡), �̈�𝜏𝑑(𝑡), 

 limited force trajectory in normal directions 𝐹𝑒𝑛𝑑(𝑡) ∈ 𝑅𝑟, 

�̇�𝑒𝑛𝑑(𝑡), �̈�𝑒𝑛𝑑(𝑡), 

 limited nominal trajectory of motion of the robot’s end effector 
in normal directions 𝑐𝑛 𝑛𝑜𝑚(𝑡) ∈ 𝑅𝑟 , 𝑐�̇� 𝑛𝑜𝑚(𝑡), �̈�𝑛 𝑛𝑜𝑚(𝑡), 
which results from the assumed surface shape. 
Assumption 1 concerning simultaneous knowledge of the de-

scription of the nominal motion path and the force trajectory in the 
same direction (normal) is a significant difference in comparison to 
the assumptions formulated in typical issues related to posi-
tion/force control. It also allows the definition of a modified control 
objective, by an appropriate definition of the filtered tracking error, 
which in the case of taking into account the inaccuracy of con-
straints must be different than in the case of knowing the envi-
ronment surface or omitting its inaccuracy. 

To define the control objective, control errors were introduced, 
where 

�̃�𝜏 = 𝑐𝜏𝑑 − 𝑐𝜏  (5) 

is the error of motion in the tangential plane, and 

�̃�𝑒𝑛 = 𝐹𝑒𝑛𝑑 − 𝐹𝑒𝑛  (6) 

is the error of force in the normal direction. An auxiliary variable 

𝛿 ∈ 𝑅𝑟  is defined such that 

𝛿 = 𝑐𝑛 − 𝑐𝑛 𝑛𝑜𝑚 − 𝛿0  (7) 

which is related to the difference between the nominal position of 

the robot end effector 𝑐𝑛 𝑛𝑜𝑚 resulting from the theoretically 
existing constraints and the real position 𝑐𝑛 in the normal direction 
(Fig. 3). 

 
Fig. 3. Variables related to the position of the robot’s end effector  

in the normal direction 

That is, 𝛿 is the deviation of the end effector from the as-
sumed constraints in the normal direction. In detail, it should be 

added that the expression 𝛿0 = 𝐾𝑒
−1𝐹𝑒𝑛𝑑  is the predicted sur-

face deformation derived from the pressure force, 𝐹𝑒𝑛. With high 
surface rigidity, this deformation is negligible. 

To achieve the control objective, a filtered tracking error was 
introduced: 

𝑠 = [
𝑠𝜏

𝑠𝑛
]  (8) 

in which 

𝑠𝜏 = �̃� ̇𝜏 + 𝛬𝜏�̃�𝜏 (9) 

𝑠𝑛 = �̃� ̇ 𝑒𝑛 − 𝑤𝛿 �̇� + 𝛬𝑛(�̃�𝑒𝑛 − 𝑤𝛿𝛿)   (10) 

where 𝛬𝜏 ∈ 𝑅(𝑚−𝑟)×(𝑚−𝑟) and 𝛬𝑛 ∈ 𝑅𝑟×𝑟  are diagonal gain 

matrices and 𝑤𝛿 ∈ 𝑅𝑟×𝑟 is the cooperation gain matrix. Expres-
sion (10) introduces a new approach to the problem of control in 

the normal direction to the surface of constraints. Compared with 
the approach presented in papers [6,10], in which the generalised 

error 𝑠𝑛 for normal directions depends on the force error and its 
derivative, here it also depends on deviation 𝛿 from the desired 
nominal motion path in the normal direction and from the deriva-

tive �̇�. 
Eqs (8)–(10) make it possible to write the description of the 

dynamics as a function of the filtered tracking error: 

𝐴(𝑞)𝐸�̇� = −𝐻(𝑞, �̇�)𝐸𝑠 + 𝑓 + 𝛹(𝑞, 𝑡) − 𝑈 − 𝜆   (11) 

with the non-linear part 𝑓𝑅𝑚  dependent on both the robot 
mathematical model and the environment designated as follows: 

𝑓 = 𝐴(𝑞)𝐸�̇� + 𝐻(𝑞, �̇�)𝐸𝑣 + 𝐵(𝑞, �̇�)   (12) 

where there is an auxiliary variable that has the following form: 

𝑣 = [
�̇�𝜏𝑑

�̇�𝑒𝑛𝑑 − 𝑤𝛿�̇�
] − [

𝛬𝜏 0
0 𝛬𝑛

] [
�̃�𝜏

�̃�𝑒𝑛 − 𝑤𝛿𝛿
]   (13) 

Next, the control law including the PD controller (term 𝐾𝐷𝑠), the 

non-linearity compensating control 𝑓 ∈ 𝑅𝑚 , the term compensat-

ing the interaction force λ and the robust term 𝑟 ∈ 𝑅𝑚  was as-
sumed: 

𝑈 = 𝐾𝐷𝑠 + 𝑓 − 𝜆 − 𝑟   (14) 

where 𝐾𝐷 ∈ 𝑅𝑚×𝑚 is a gain matrix such that 𝐾𝐷 = 𝐾𝐷
𝑇 > 0, 

and function 𝑓 approximates 𝑓. Regarding the first control part, it 

is possible to decompose the 𝐾𝐷 matrix according to the equa-
tion: 

𝐾𝐷 = [
𝐾𝐷𝜏 0
0 𝐾𝐷𝑛

]   (15) 

where 𝐾𝐷𝜏 ∈ 𝑅(𝑚−𝑟)×(𝑚−𝑟) and 𝐾𝐷𝑛 ∈ 𝑅𝑟×𝑟 are diagonal gain 
matrices. 

The part 𝑓 was introduced into the control law of Eq. (14) to 

compensate for the non-linear function 𝑓, which depends on, inter 
alia, the inaccuracy of the surface 𝛿, not just from the force error 

�̃�𝑒𝑛. The function 𝑓 can be decomposed into two parts, one of 
which corresponds to the tangential directions and the other the 
normal direction: 

𝑓 = [
𝑓𝜏
𝑓𝑛

]   (16) 

The constituent functions 𝑓𝜏 and 𝑓𝑛 described by Eq. (17) can 
be approximated with the help of various techniques. The nonlin-
ear components 𝑓𝜏 and 𝑓𝑛 can be written as outputs from ideal 
RVFL (Random Vector Functional Link) neural networks with 
limited approximation errors as follows [41,42]: 

𝑓 = [
𝑓𝜏
𝑓𝑛

] =

[
 
 
 
 
 

𝑊𝜏
𝑇𝛷𝜏(𝑥𝜏) + 휀𝜏(𝑥𝜏)

𝑊𝑛1
𝑇 𝛷𝑛1(𝑥𝑛1) + 휀𝑛1(𝑥𝑛1)

⋮
𝑊𝑛𝑖

𝑇𝛷𝑛𝑖(𝑥𝑛𝑖) + 휀𝑛𝑖(𝑥𝑛𝑖)

⋮
𝑊𝑛𝑟

𝑇 𝛷𝑛𝑟(𝑥𝑛𝑟) + 휀𝑛𝑟(𝑥𝑛𝑟)]
 
 
 
 
 

   (17) 

where 𝑥𝜏 and 𝑥𝑛𝑖 are network input signals vectors, 𝑊𝜏 and 𝑊𝑛𝑖 

are ideal output weights matrices, 𝛷𝜏(. )and 𝛷𝑛𝑖(. ) are neurons 

activation functions vectors and 휀𝜏 and 휀𝑛𝑖 are vectors of errors of 
function mapping by networks that ‖휀𝜏‖ ≤ 휀𝑏𝜏 and |휀𝑛𝑖| ≤ 휀𝑏𝑛𝑖 

where 휀𝑏𝜏 > 0, 휀𝑏𝑛𝑖 > 0. If neuron activation functions are 
selected in the form of a basic functions’ group, then the network 
with ideal limited weights has the feature of approximation of any 
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function defined on a compact set with a finite number of disconti-
nuity points. Since network ideal weights are unknown, function 
estimate Eq. (19) should be used, in the following form: 

𝑓 = [
𝑓𝜏
𝑓𝑛

] =

[
 
 
 
 
 
 

�̂�𝜏
𝑇𝛷𝜏(𝑥𝜏)

�̂�𝑛1
𝑇 𝛷𝑛1(𝑥𝑛1)

⋮
�̂�𝑛𝑖

𝑇 𝛷𝑛𝑖(𝑥𝑛𝑖)

⋮
�̂�𝑛𝑟

𝑇 𝛷𝑛𝑟(𝑥𝑛𝑟)]
 
 
 
 
 
 

   (18) 

where �̂�𝜏 and �̂�𝑛𝑖 are network ideal weights estimates. Each 

nonlinear function 𝑓𝑛 was decomposed into functions 𝑓𝑛𝑖, each of 

which corresponds to the normal 𝑖-th direction and is approximat-
ed by a separate neural network. The decomposition was per-
formed in order to facilitate the proving of closed-loop system 
stability. 

Assuming the control law of Eq. (14) and taking into account 
relationships of Eqs (16)–(18), a description of a closed system 
was obtained in the form: 

𝐴𝐸�̇� = −𝐻𝐸𝑠 − 𝐾𝐷𝑠 + 𝑟 +

[
 
 
 
 
 

�̃�𝜏
𝑇𝛷𝜏(𝑥𝜏)

�̃�𝑛1
𝑇 𝛷𝑛1(𝑥𝑛1)

⋮
�̃�𝑛𝑖

𝑇𝛷𝑛𝑖(𝑥𝑛𝑖)

⋮
�̃�𝑛𝑟

𝑇 𝛷𝑛𝑟(𝑥𝑛𝑟)]
 
 
 
 
 

+

[
 
 
 
 
 

휀𝜏(𝑥𝜏)

휀𝑛1(𝑥𝑛1)
⋮

휀𝑛𝑖(𝑥𝑛𝑖)
⋮

휀𝑛𝑟(𝑥𝑛𝑟)]
 
 
 
 
 

+

𝛹(𝑞, 𝑡)  (19) 

where 

�̃�𝜏 = 𝑊𝜏 − �̂�𝜏   (20) 

�̃�𝑛𝑖 = 𝑊𝑛𝑖 − �̂�𝑛𝑖  (21) 

are errors of weights estimates. 
Appropriate assumptions were made to prove the stability of 

the control system. 
Assumption 2: There is limited interference on the dynamic 
system (1): 

𝛹(𝑞, 𝑡) = [
𝛹𝜏(𝑞, 𝑡)

𝛹𝑛(𝑞, 𝑡)
]   (22) 

where 𝛹𝜏(𝑞, 𝑡)𝑅𝑚−𝑟 , 𝛹𝑛(𝑞, 𝑡)𝑅𝑟  and 𝑏𝜏, 𝑏𝑛𝑖 are known 

constants such that ‖𝛹𝜏(𝑞, 𝑡)‖ ≤ 𝑏𝜏 and ‖𝛹𝑛(𝑞, 𝑡)‖ ≤ 𝑏𝑛𝑖. 
Assumption 3: The vector of filtered tracking error in the form of 
Eq. (8) can be decomposed according to the following equation: 

𝒔 = [
𝒔𝜏

𝒔𝑛
]   (23) 

where 𝒔𝜏 ∈ 𝑅𝑚−𝑟 and 𝒔𝑛 = [𝑠𝑛1 … 𝑠𝑛𝑖 … 𝑠𝑛𝑟]𝑇 ∈ 𝑅𝑟. 
Assumption 4: A robust term can be decomposed in the follow-
ing way: 

𝑟 = [
𝑟𝜏
𝑟𝑛

]   (24) 

where 

𝑟𝜏 = −
𝐾𝜏

‖𝑠𝜏‖
𝑠𝜏   (25) 

𝑟𝑛𝑖 = −𝐾𝑛𝑖
𝑠𝑛𝑖

|𝑠𝑛𝑖|
   (26) 

and 𝐾𝜏 > 𝑏𝜏 ≥ ‖𝛹𝜏(𝑞, 𝑡)‖ and 𝐾𝑛𝑖 > 𝑏𝑛𝑖 ≥ |𝛹𝑛𝑖(𝑞, 𝑡)|. 
Assumption 5: The weights matrices are limited so that 

‖𝑾𝝉‖𝑭 ≤ 𝑾𝝉 𝒎𝒂𝒙   (27) 

‖𝑾𝒏𝒊‖𝑭 ≤ 𝑾𝒏𝒊 𝒎𝒂𝒙   (28) 

Assumption 6: The weights adaptation law takes the form of the 
equations [43]: 

�̇̂�𝜏 = 𝛤𝜏𝛷𝜏(𝑥𝜏)𝑠𝜏
𝑇 − 𝑘𝜏‖𝑠𝜏‖𝛤𝜏�̂�𝜏   (29) 

�̇̂�𝑛𝑖 = 𝛤𝑛𝑖𝛷𝑛𝑖(𝑥𝑛𝑖)𝑠𝑛𝑖 − 𝑘𝑛𝑖|𝑠𝑛𝑖|𝛤𝑛𝑖�̂�𝑛𝑖   (30) 

where 𝛤𝜏 = 𝛤𝜏
𝑇 > 0, 𝛤𝑛𝑖 = 𝛤𝑛𝑖

𝑇 > 0, 𝑘𝜏 > 0 and 𝑘𝑛𝑖 > 0 are 
design parameters. 
Theorem 1: If the system described by Eq. (1) is controlled by Eq. 
(14) and Assumptions 1–6 are fulfilled, the filtered tracking errors 

𝑠𝜏  and 𝑠𝑛𝑖 and estimation errors �̃�𝜏 and �̃�𝑛𝑖 are uniformly ulti-
mately bounded with practical limits given by the right-hand side 
of the Eqs (41)–(44), respectively. 
Proof of Theorem 1. The description of the system given by Eq. 
(1) was transformed into a description in terms of the filtered 
tracking error of Eq. (11), and after the introduction of the control 
law of Eq. (14), a closed-loop system description [Eq. (20)] was 
obtained, including disturbances and a robust term. To demon-
strate the stability of the closed system, the Lyapunov stability 
theory was used. The following function was assumed: 

𝑉 =
1

2
𝑠𝑇𝐸𝑇𝐴(𝑞)𝐸𝑠 +

1

2
𝑡𝑟[�̃�𝜏

𝑇𝛤𝜏
−1�̃�𝜏] +

1

2
∑ 𝑃𝑒𝑖𝑖𝑡𝑟[�̃�𝑛𝑖

𝑇 𝛤𝑛𝑖
−1�̃�𝑛𝑖]

𝑟
𝑖=1

  (31) 

where 𝑃𝑒𝑖𝑖  is an element of the matrix of environmental vulnerabil-
ity. By calculating the derivative of function Eq. (31) with respect 
to time and taking into account Eq. (19), the following was ob-
tained: 

�̇� = 𝑠𝑇𝐸𝑇(−𝐾𝐷𝑠 + 𝑟 + 𝛹(𝑞, 𝑡)) + 𝑠𝑇𝐸𝑇

(

 
 
 
 

[
 
 
 
 
 

�̃�𝜏
𝑇𝛷𝜏(𝑥𝜏)

�̃�𝑛1
𝑇 𝛷𝑛1(𝑥𝑛1)

⋮
�̃�𝑛𝑖

𝑇𝛷𝑛𝑖(𝑥𝑛𝑖)

⋮
�̃�𝑛𝑟

𝑇 𝛷𝑛𝑟(𝑥𝑛𝑟)]
 
 
 
 
 

+

[
 
 
 
 
 

휀𝜏(𝑥𝜏)

휀𝑛1(𝑥𝑛1)
⋮

휀𝑛𝑖(𝑥𝑛𝑖)
⋮

휀𝑛𝑟(𝑥𝑛𝑟)]
 
 
 
 
 

)

 
 
 
 

+ 𝑡𝑟 [�̃�𝜏
𝑇𝛤𝜏

−1�̇̃�𝜏] + ∑ 𝑃𝑒𝑖𝑖𝑡𝑟 [�̃�𝑛𝑖
𝑇𝛤𝑛𝑖

−1�̇̃�𝑛𝑖]
𝑟
𝑖=1    (32) 

where the following property [10] was used: 

𝑠𝑇𝐸𝑇[�̇�(𝑞) − 2𝐻(𝑞, �̇�)]𝐸𝑠 = 0   (33) 

Given that 𝐸𝑇 = 𝐸 and taking into account Eq. (8), the fourth 
element of Eq. (32) was transformed into the following form: 

𝑠𝜏
𝑇�̃�𝜏

𝑇𝛷𝜏(𝑥𝜏) + ∑ 𝑠𝑛𝑖𝑃𝑒𝑖𝑖�̃�𝑛𝑖
𝑇𝛷𝑛𝑖(𝑥𝑛𝑖)

𝑟
𝑖=1    (34) 

The disturbance vector and robust control vector were also 
decomposed as follows: 

𝛹(𝑞, 𝑡) = [𝛹𝜏
𝑇(𝑞, 𝑡) 𝛹𝑛1(𝑞, 𝑡) … 𝛹𝑛𝑖(𝑞, 𝑡) … 𝛹𝑛𝑟(𝑞, 𝑡)]𝑇 

  (35) 

𝑟 = [𝑟𝜏
𝑇 𝑟𝑛1 … 𝑟𝑛𝑖 … 𝑟𝑛𝑟]

𝑇   (36) 

Taking into account Eqs (4), (15), (23) and (34)–(36) and the 
weights adaptation laws of Eqs (29) and (30), the following equa-
tion was obtained: 

�̇� = −𝑠𝜏
𝑇𝐾𝐷𝜏𝑠𝜏 − 𝑠𝑛

𝑇𝑃𝑒𝐾𝐷𝑛𝑠𝑛 + 𝑘𝜏‖𝑠𝜏‖𝑡𝑟[�̃�𝜏
𝑇�̂�𝜏] +

∑ 𝑃𝑒𝑖𝑖𝑘𝑛𝑖|𝑠𝑛𝑖|𝑡𝑟[�̃�𝑛𝑖
𝑇 �̂�𝑛𝑖]

𝑟
𝑖=1 + 𝑠𝜏

𝑇[휀𝜏(𝑥𝜏) + 𝛹𝜏(𝑞, 𝑡)] + 𝑠𝜏
𝑇𝑟𝜏 +

∑ 𝑠𝑛𝑖𝑃𝑒𝑖𝑖(휀𝑛𝑖(𝑥𝑛𝑖) + 𝛹𝑛𝑖(𝑞, 𝑡))𝑟
𝑖=1 + ∑ 𝑠𝑛𝑖𝑃𝑒𝑖𝑖𝑟𝑛𝑖

𝑟
𝑖=1    (37) 

The ideal weights of neural networks are by definition limited, 
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which means that they meet the conditions (28) and (29), which 
were used for the transformations: 

𝑡𝑟[�̃�𝜏
𝑇�̂�𝜏] = 𝑡𝑟[�̃�𝜏

𝑇(𝑊𝜏 − �̃�𝜏)] ≤ ‖�̃�𝜏‖𝐹
𝑊𝜏𝑚𝑎𝑥 − ‖�̃�𝜏‖𝐹

2
   (38) 

𝑡𝑟[�̃�𝑛𝑖
𝑇 �̂�𝑛𝑖] = 𝑡𝑟[�̃�𝑛𝑖

𝑇 (𝑊𝑛𝑖 − �̃�𝑛𝑖)] ≤ ‖�̃�𝑛𝑖‖𝐹
𝑊𝑛𝑖𝑚𝑎𝑥 − ‖�̃�𝑛𝑖‖𝐹

2
 

  (39) 

Taking into account network weight limitations, robust term el-
ements of Eqs (25) and (26), Eq. (37) was transformed into the 
form: 

�̇� ≤ −‖𝑠𝜏‖ [𝐾𝐷𝜏𝑚𝑖𝑛‖𝑠𝜏‖+𝑘𝜏‖�̃�𝜏‖𝐹
(‖�̃�𝜏‖𝐹

− 𝑊𝜏𝑚𝑎𝑥) − 휀𝑏𝜏] −

∑ 𝑃𝑒𝑖𝑖|𝑠𝑛𝑖| [𝐾𝐷𝑛𝑖𝑖|𝑠𝑛𝑖| + 𝑘𝑛𝑖‖�̃�𝑛𝑖‖𝐹
(‖�̃�𝑛𝑖‖𝐹

− 𝑊𝑛𝑖𝑚𝑎𝑥) +𝑟
𝑖=1

휀𝑏𝑛𝑖]   (40) 

The function �̇� is negative if the expressions in square brack-
ets are positive. They are positive if the errors meet the following 
inequalities: 

‖𝑠𝜏‖ >
𝑘𝜏𝑊𝜏𝑚𝑎𝑥

2 +4 𝑏𝜏

4𝐾𝐷𝜏𝑚𝑖𝑛
≡ 𝑏𝑠𝜏   (41) 

|𝑠𝑛𝑖| >
𝑘𝑛𝑖𝑊𝑛𝑖𝑚𝑎𝑥

2 +4 𝑏𝑛𝑖

4𝐾𝐷𝑛𝑖𝑖
≡ 𝑏𝑠𝑛𝑖   (42) 

or 

‖�̃�𝜏‖𝐹
>

𝑊𝜏𝑚𝑎𝑥

2
+ √

𝑊𝜏𝑚𝑎𝑥
2

4
+ 𝑏𝜏

𝑘𝜏
≡ 𝑏𝑊𝜏   (43) 

‖�̃�𝑛𝑖‖𝐹
>

𝑊𝑛𝑖𝑚𝑎𝑥

2
+ √

𝑊𝑛𝑖𝑚𝑎𝑥
2

4
+ 𝑏𝑛𝑖

𝑘𝑛𝑖
≡ 𝑏𝑊𝑛𝑖   (44) 

It follows that �̇� is negative outside the compact sets defined 
by Eqs (41)–(44). According to the extension of the standard 

Lyapunov theory, it can be concluded that ‖𝑠𝜏‖, |𝑠𝑛𝑖|, ‖�̃�𝜏‖𝐹
 

and ‖�̃�𝑛𝑖‖𝐹
 are uniformly ultimately bounded, and the control 

system is stable. Therefore, the filtered tracking error 𝑠 and its 
derivative are limited, similar to the matrices of weight estimates 

�̂�𝜏 and �̂�𝑛𝑖. □ 

6. SIMULATION RESULTS 

The manipulator model was used in the simulation tests; the 
diagram of which is shown in Fig. 4. Its arm has three links, used 
to achieve the position, and the other links responsible for orienta-
tion are not used in these studies. Details on kinematics, dynam-
ics, parameters and path planning used in the simulation are 
given in Appendix A in a paper [7]. 

End effector of the robot (point D) should move on a surface 

lying in the plane parallel to the plane 𝑥0𝑦0 and simultaneously 
exert pressure force perpendicular to the surface. The Fig. 5 
shows the desired motion path of point D (Figs. 5a,b)  and the 
desired velocity (Fig. 5c). To test the properties of the control 
system, the simulation was carried out assuming an inaccuracy in 
the surface, consisting in a depression in the surface of 0.001 m, 
which is shown in Fig. 6a. Changing the surface can also be 
represented as a change of surface profile in terms of time during 
the motion of the end effector (Fig. 6b). 

 
Fig. 4. Model of a robotic manipulator in contact with a flexible  

environment: O0E = d1, EA = l1, AB = l2, BC = l3  

and CD = d5 are geometrical parameters characterising  

the robot arm; q1, q2 and q3 are angles of link rotation assumed 

as generalised coordinates; u1, u2 and u3 are input moments; 

Ke is stiffness coefficient and μ is coefficient of dry friction 

a) 

 
b) 

 
c) 

 
Fig. 5. The desired motion: (a) motion path of point D in the xy plane;  

(b) motion path of point D in the xz plane and (c) the desired  
velocity of motion of point D 
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 (a) 

 
(b) 

 
Fig. 6. Disruption of the surface of constraints: (a) defect in the surface 

and (b) change of the surface of constraints in time along  
the desired motion path 

(a) 

 
(b) 

 
(c) 

 
Fig. 7. The desired trajectory: (a) coordinates of point D; (b) pressure 

force and (c) nominal coordinate of point D in normal direction 

The desired positional trajectory is shown in Fig. 7a, the de-
sired force trajectory is shown in Fig. 7b and the nominal coordi-
nate of point D in the normal direction is shown in Fig. 7c. The 
developed control algorithm requires the nominal trajectory of 
motion in the normal direction 𝑐𝑛 𝑛𝑜𝑚 to be given. A trajectory 
deviation from nominal trajectory in the normal direction will acti-
vate the second control strategy. Moreover, due to the flexibility of 
contact surface, it will be deformed proportional to the pressure 
force. 

To implement the robot’s task, a control given by Eq. (14) was 

used in which the gain matrices have the form 𝐾𝐷 =
𝑑𝑖𝑎𝑔{𝐾𝐷𝜏1, 𝐾𝐷𝜏2, 𝐾𝐷𝑛} and 𝛬 = 𝑑𝑖𝑎𝑔{𝛬𝜏1, 𝛬𝜏2, 𝛬𝑛}, and in 

the analysed case, 𝑤𝛿  is a one-dimensional coefficient, which 
determines the behaviour of the system in the presence of surface 
disturbances. The environmental vulnerability matrix is one di-

mensional; the vulnerability coefficient is 𝑃𝑒 = 0.0001 m/N. In 
order to compensate for nonlinearities in each of the directions, 
neural networks with 15 bipolar sigmoid neurons were used. Table 
1 shows the parameters of the control system. 

Tab. 1. Parameters of control system used in numerical tests 

Parameter Unit Value 

𝐾𝐷𝜏1 kg/s 1 

𝐾𝐷𝜏2 kg/s 1 

𝐾𝐷𝑛 s 0.002 

𝛬𝜏1 s–1 3 

𝛬𝜏2 s–1 3 

𝛬𝑛 s–1 3.5 

𝑘𝜏1 - 0.1 

𝑘𝜏2 - 0.1 

𝑘𝑛 - 0.1 

𝐾𝜏 N 0.0001 

𝐾𝑛 N 0.00001 

𝜞𝜏1 - 5 ∙ 𝐼15𝑥15 

𝜞𝜏2 - 5 ∙ 𝐼15𝑥15 

𝜞𝑛 - 0.003 ∙ 𝐼15𝑥15 

𝑤𝛿  N/m 10,000 

Fig. 8a shows the realised trajectory in the tangent directions. 
The pressure force in the normal direction together with the de-
sired force (indicated by the dashed line) is shown in Fig. 8c. In 
the area of surface disturbance, the actual pressure force was 
reduced, which fulfills the goal of the control strategy. The surface 
profile (dashed line) and surface deformation under pressure force 
are shown in Fig. 8b. Fig. 8d shows the deviation of the robot end 
effector from the desired path in the normal direction. 

The overall control signals in the task space are shown in Fig. 
9. It is clearly seen in Fig. 9b that, in the surface disturbance 
region, the control changes to reduce the end effector pressure on 
the surface (from 30 s to 45 s). The components of the control 
signals resulting from Eq. (14) are shown in Fig. 10: PD control 
(Fig. 10a,b), compensatory control (Fig. 10c,d), interaction force 
compensation (Fig. 10e,f) and robust control (Fig. 10g,h). The 
most sensitive to surface inaccuracies are the PD controls (Fig. 
10b) and the control compensating for the effect of normal force 
(Fig. 10f). 

Control errors in tangential directions are shown in Fig. 11a. 
These are typical waveforms showing oscillations resulting from 
the acceleration and deceleration phases in the initial and final 
phases of the movement. The pressure force error (Fig. 11b) also 
shows oscillations in these movement phases, but more im-
portantly, it increases when the surface disturbance occurs. It is 
related to the deviation of the robot end effector from the desired 
motion path (Fig. 8d). The component goals of minimising the 
force error and minimising the robot’s deviation from the path are 
not fully achieved because they are competitive and cannot be 
achieved simultaneously in a surface disturbance situation. How-
ever, this is consistent with the definition of the filtered tracking 
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error given by Eq. (10), which indicates that the simultaneous 
occurrence of a force error and a position error in the normal 
direction does not contradict the possibility of minimising the 
filtered tracking error. Such formulation of the control objective is 
conducive to achieving a “balance” between minimising the force 
error and minimising the deviation from the nominal surface. 

a) 

 
b) 

 
c) 

 
d) 

 
Fig. 8. Realised trajectory: (a) coordinates of point D in the tangential 

directions; (b) coordinates of point D in the normal direction  
related to surface deformation; (c) pressure force and  
(d) deviation of robot’s end effector from assumed constraints  
in the normal direction 

a) 

 
b) 

 
Fig. 9. The overall control signals: (a) in tangential directions  

and (b) in the normal direction 

a) 

 
b) 

 
c) 

 
 

d) 

 
e) 
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f) 

 
g) 

 
h) 

 
Fig. 10. Control signals: (a) PD control in tangential directions,  

where uPD1 = KDτ1sτ1 and uPD2 = KDτ2sτ2; (b) PD control 
in the normal direction, where uPD3 = KDnsn; (c) compensato-

ry control in tangential directions, where ukomp1 = f̂τ1  

and ukomp2 = f̂τ2; (d) compensatory control in the normal  

direction, where ukomp3 = f̂n; (e) control compensating  

for the influence of friction forces; (f) control compensating  
for normal force; (g) robust control in tangential directions  
and (h) robust control in the normal direction 

(a) 

 
(b) 

 
Fig. 11. Tracking errors: (a) motion errors in tangential directions  

and (b) normal force error 

 
Fig. 12. Estimates of the weights of neural network compensating  

nonlinearities in the normal direction 

The estimates of the weights of the neural network generating 
the compensatory control for the normal direction are shown in 
Fig. 12. They are limited, according to the stability proof, and their 
greatest variability occurs in the initial phase of motion, which is 
also the stage of the most intensive training of the neural network. 

7. CONCLUSIONS 

The article presents the synthesis of the control system for the 
robot-flexible environment system. The influence of the contact 
surface disturbance on the robot’s behaviour was taken into ac-
count. The results of the simulation tests show that the require-
ments for the control system were met, i.e., firstly, the control 
system was stable, and secondly, the cooperative control strategy 
was correctly implemented. By appropriately combining the two 
elemental control strategies, a compromise is ensured between 
the execution of the desired pressure force and the maintenance 
of the desired movement path. 

The main contribution of the article is as follows: the use of 
additional control components, which can be interpreted as reac-
tions of virtual constraints, ensures a self-regulation of the robot’s 
interaction force with a flexible environment, minimising the influ-
ence of the geometric inaccuracy of the environment. The pre-
sented method was developed for the use in robotic machining of 
elements with imprecise shape, e.g., thin-walled castings or parts 
made of plastics, which have low precision and are very flexible. 
The difficulty in its application in practice is the need to modify 
standard industrial robot controllers [44]. 
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