PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Substituting Ti-64 with AA2099 as material of a commercial aircraft pylon

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aircraft industry is striving to reduce the weight of aircraft to save fuel and hence reduce total cost. New alloys and composites with properties such as low weight and high strength are continuously developed. Titanium alloys have the best strength-to-weight ratio among metals which makes them very suitable for aircraft applications. Ti-64 is the most common Titanium alloy used in aircraft. AA2099 is a 3rd generation Al-Li alloy and has the lowest density among all Aluminium alloys making it very attractive for aircraft applications. Pylons of commercial aircraft are currently made primarily with Ti-64 and this study focused on the replacement of Ti-64 with AA2099. Loading conditions, operating temperature, corrosion resistance, manufacturability and recyclability of the pylon were analysed of both Ti-64 and AA2099. Three critical scenarios were chosen for the loading conditions of the pylon. These were simulated using finite element analysis first using Ti-64 and then AA2099. From the results, it is evident that using AA2099 as the material of the pylon instead of Ti-64 offered weight savings. The operating temperature, manufacturability and recyclability also showed advantages when using AA2099 whereas corrosion factors favoured Ti-64, since AA2099 was found to be very prone to galvanic corrosion.
Słowa kluczowe
Rocznik
Strony
77--92
Opis fizyczny
Bibliogr. 61 poz., tab., il., wykr.
Twórcy
autor
  • Glasgow Caledonian University, Department of Mechanical Engineering, School of Computing, Engineering and Built Environment, Cowcaddens Road, Glasgow, G40BA
  • Glasgow Caledonian University, Department of Mechanical Engineering, School of Computing, Engineering and Built Environment, Cowcaddens Road, Glasgow, G40BA
Bibliografia
  • 1. Prasad N.E., Wanhill R.J.H. Aerospace materials and material technologies. Vol. 3. Singapore: Springer, 2017.
  • 2. Boyer R.R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 213(1-2) (1996) 103-114.
  • 3. Bell T. Titanium properties and characteristics. ThoughtCo. (2019).
  • 4. Sankaran K.K., Mishra R.S. Titanium alloys. In: Metallurgy and design of alloys with hierarchical microstructures. (2017) 177–288.
  • 5. Donachie M.J. Introduction to selection of titanium alloys. In: Titanium - a technical guide. Ohio: ASM International. (2000) 5–11.
  • 6. Tolvanen S. Microstructure and mechanical properties of Ti-6Al-4V welds produced with different processes. Chalmers University of Technology, Gotthenburg, Sweden. (2016).
  • 7. Singh P, Pungotra H, Kalsi N.S. On the characteristics of titanium alloys for the aircraft applications. Materials Today, (2017) 8971–8982.
  • 8. Gomez-Gallegos A, Mandal P, Gonzalez D, Zuelli N, Blackwell P. Studies on titanium alloys for aerospace application. Defect and Diffusion Forum, 385 (2018) 419–423.
  • 9. Rioja R.J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications. Materials Science and Engineering: A, 257(1) (1998) 100–107.
  • 10. Rioja R.J, Liu J. The evolution of Al-Li base products for aerospace and space applications. Metallurgical and Materials Transactions A, 43(9) (2012) 3325–3337.
  • 11. Alloy 2099-T83 and 2099-T8E67 extrusions. Datasheet. Alcoa Inc, Bettendorf, Iowa, USA (2005).
  • 12. Dong H, Guo F, Huang W, Yang X, Zhu X, Li H, Jiang L. Shear banding behavior of AA2099 Al-Li alloy in asymmetrical rolling and its effect on recrystallization in subsequent annealing. Materials Characterization, 177 (2021) 111155.
  • 13. Balducci E, Ceschini L, Messieri S. High temperature tensile tests of the lightweight 2099 and 2055 Al-Cu-Li alloy: A comparison. JOM, 70(11) (2018) 2716–25.
  • 14. Dorin T, Vahid A, Lamb J. Aluminium Lithium Alloys. In: Fundamentals of Aluminium Metallurgy Woodhead Publishing, (2018) 387–438.
  • 15. Busson G, Preist J. A380 capability and profitability enhancements. FAST A380 Special Edition (2016).
  • 16. Aluminium Alloy Specifications. Datasheet. Aalco Metals Limited, Wednesbury, Great Britain, (2020).
  • 17. Boyer R, Welsch G, Collings E.W. Materials Properties Handbook - Titanium alloys. ASM International, (1994).
  • 18. Corrosion resistance of titanium. Titanium Metals Corporation. Denver, Colorado, (1997).
  • 19. Davis JR. Aluminum and Aluminum Alloys. Light Met Alloy. ASM International, (2001) 351–416.
  • 20. Titanium Alloys - Ti6Al4V Grade 5. U.S. Titanium Industry Inc. - AZO Materials, (2002).
  • 21. Morrissey R.J, Nicholas T. Fatigue strength of Ti-6Al-4V at very long lives. International Journal of Fatigue, 27(10-12) (2005) 1608–12.
  • 22. Ti-6Al-4V (Grade 5). Datasheet, Biggleswade, Great Britain (2018).
  • 23. Titanium Ti-6Al-4V. Datasheet, Newbury, Great Britain (2020).
  • 24. Yang R, Yang J, Xie K, Liu Z, Zhang G. Investigation of micro-yield strength and coefficient of thermal expansion of Al-Cu-Mg-Li-Sc-Ag alloys with various contents of Li. Journal of Materials Research, 34(15) (2019) 2714-2726.
  • 25. Thomas R.H, Czech M.J, Elmiligui A.A. Active Aircraft Pylon Noise Control System. US Patent LAR-TOPS-179.
  • 26. Structural blind fasteners. Flight Airworth Support Technology, (27) (2019) 26–9.
  • 27. Ferrer G, Chamfroy C, Dupouy. SS. A350 XWB composite repairs. Flight Airworth Support Technology, (2016) 32.
  • 28. Pora J. Advanced materials and technologies for A380 structure. Flight Airworth Support Technology, (2003) 32.
  • 29. A320 family (CFM56) familiarization course. Islamabad, Pakistan (2018).
  • 30. Kämpf P. Why not mount airliner jet engines above the wings? https://aviation.stackexchange.com/questions/9680/why-not-mount-airliner-jet-engines-above-the-wings.
  • 31. Heid T. The ABC’s of Engine Mount Inspection & Repair. Aviation Pros, (2000).
  • 32. Trent 900. Rolls-Royce.
  • 33. Morris H. Why planes fly at 35,000 feet: The reason for high altitude flights. Traveller, (2017).
  • 34. Acron Welding. Aircraft engine mounts- here’s what you need to know. Acron Welding, (2020).
  • 35. Investigation report A330 jetliners’ engine bleed air system failures: Serious Incidents on 11 and 22 December 2010. Helsinki, Finland (2012).
  • 36. Mitchell J. The galvanic series - the essential guide. Engineering Clicks, (2017).
  • 37. Aircraft & Composite Recycling. Boeing. environmental Technotes, 12(1) (2007) 1–4.
  • 38. Meilak J. How G-Force works. MiGFlug, (2018).
  • 39. Dubois P. Towards an efficient FDA Programme. Miami, USA (2016).
  • 40. Aviation Security Service. Maximum rate turns. Civil Aviation Authority New Zealand, (2020).
  • 41. Chen B, Li C.H, He S.C, Li X.L, Lu C. Corrosion behavior of 2099 Al-Li alloy in NaCl aqueous solution. Journal of Materials Research, 29(12) (2014) 1344-1353.
  • 42. Antunes R.A, de Oliveiraa M.C.L, Salvador C.A.F. Materials selection of optimized titanium alloys for aircraft applications. Materials Research, 21(2) (2017).
  • 43. Bylya O, Gomez-Gallegos A, Stefani N, Blackwell P. Al-Li alloys – the analysis of material behaviour during industrial hot forging. Procedia Engineering, 207 (2017) 7–12.
  • 44. Modlin C.T, Zipay J.J. The 1.5 & 1.4 ultimate factors of safety for aircraft & spacecraft - history, definition and applications. Aircraft structures for engineering students, (2014) 1–26.
  • 45. Wang G, Li J, Lv K, Zhang W, Ding X, Yang G, et al. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific Reports 6(1) (2016) 1-13.
  • 46. Atmospheric Corrosion of Aluminum Alloys. Total Materia, (2014).
  • 47. Aluminium - Grades, Formability, Fabrication and Finishing. Aalco Metals Limited, Wednesbury, Great Britain, (2005).
  • 48. Mapelli C, Venturini R, Tagliabue C. Extrusion simulation of TI-6AL-4V for the production of special shaped cross sections. Metallurgical Science and Tecnology, 22(2) (2013) 14–20.
  • 49. Sheppard T. Extrusion of aluminium alloys. Springer Science and Business Media, (1999).
  • 50. Boyer RR, Cotton J.D, Mohaghegh M, Schafrik R.E. Materials considerations for aerospace applications. MRS Bulletin, 40(12) (2015) 1055–65.
  • 51. Titanium Alloy: Ti-6Al-4V. Hebei Metals Industrial Limited, China (2016).
  • 52. AFG. Aluminium recycling – processes. Alum Futur Gener, 44(0) (2016) 0–3.
  • 53. Global Aluminium Recycling : A cornerstone of sustainable development. International Aluminum Institute, (2009) 1–36.
  • 54. Aluminium Alloy: Introduction to Aluminium and its Alloys. Aalco Metals Ltd. Wednesbury, (2019).
  • 55. Recycling stainless steel and aluminium: which has higher market value? Melbourne Metal Recycling, (2019).
  • 56. Mitropolskaya N, Briggs R. Boeing: The quest for stronger, cheaper titanium alloys. Boeing Innovation Quarterly, (2018).
  • 57. Knight C. Titanium recycling gives Europe a valuable new metal supply. Medium, 2018.
  • 58. Alexopoulos N.D, Migklis E, Stylianos A, Myriounis D.P. Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading. International Journal of Fatigue, 56 (2013) 95-105.
  • 59. Sujata M, Madan M, Raghavendra K, Bhaumik SK. Fretting fatigue in aircraft components made of Ti-Al-V alloys. Procedia Engineering, 55 (2013) 481–486.
  • 60. Sen I, Gopinath K, Datta R, Ramamurty U. Fatigue in Ti-6Al-4V-B alloys. Acta Materialia, 58(20) (2010) 6799-6809.
  • 61. Wanhill R.J.H, Barter S.A. Executive summary (2009). www.nlr.nl.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7303504e-5235-47c6-9843-eacdae280fe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.