PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tailwater habitat stability after dam removal and return to a natural hydrological regime

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study was conducted from 2000 to 2003 in the tailwater of the Drzewieckie Lake, an artificial reservoir in Central Poland. Short-term peaks in water flow were generated for the purpose of the operation of a whitewater slalom canoeing track built just downstream of the dam. In 2002, the reservoir was drawn down. The patterns in habitat samples were recognized with a Kohonen’s unsupervised artificial neural network (SOM). The SOM spatial gradient was stronger than the SOM temporal gradient, which shows that the removal of the studied dam did not have a destructive impact on habitats’ features, as shown in other studies, and that the patchy nature of the riverbed has been maintained. The complete emptying of the Drzewieckie Lake took place at the beginning of the vegetation season, which allowed plants to cover the exposed bottom of the reservoir and, consequently, reduce the downstream flow of organic matter accumulated there. Patterns in the displacement of aquatic macrophytes, inorganic substratum and different fractions of particulate organic matter are discussed. The amount of dissolved oxygen decreased because of the lack of intensive water discharge from the reservoir into the river, which would result in high water turbulence. Results of this study are important for planning the ecologically sound dam removals.
Rocznik
Strony
410--425
Opis fizyczny
Bibliogr. 95 poz., fot., rys., tab.
Twórcy
autor
  • Department of Ecology and Vertebrate Zoology, University of Łódź, ul. Banacha 12/16, 90-237 Łódź, Poland
autor
  • Department of Ecology and Vertebrate Zoology, University of Łódź, ul. Banacha 12/16, 90-237 Łódź, Poland
Bibliografia
  • [1]. American Rivers (2009). Dams slated for removal in 2009. Article URL: http://www.americanrivers.org/assets/pdfs/dam- removal-docs/2009-dam-removals.pdf.
  • [2]. Asaeda, T. & Rashid M.H. (2012). The impacts of sediment released from dams on downstream sediment bar vegetation. J. Hydrol. 430-431: 25-38. DOI: 10.1016/j. jhydrol.2012.01.040.
  • [3]. Asaeda, T., Thanh H.N., Manatunge J. & Fujino T. (2004). The effects of flowing water and organic matter on the spatial distribution of submersed macrophytes. J. Freshw. Ecol. 19: 401-405. DOI: 10.1080/02705060.2004.9664912.
  • [4]. Asaeda, T., Rashid M.H., Kotagiri S. & Uchida T. (2011). The role of soil characteristics in the succession of two herbaceous lianas in a modified river floodplain. River Res. Appl. 27: 591¬601. DOI: 10.1002/rra.1374.
  • [5]. Bae, M.J., Chon T.S. & Park Y.S. (2014). Characterizing differential responses of benthic macroinvertebrate communities to floods and droughts in three different stream types using a Self-Organizing Map. Ecohydrology 7: 115-126. DOI: 10.1002/eco.1326.
  • [6]. Bednarek, A.T. (2001). Undamming rivers: A review of the ecological impacts of dam removal. Environ. Manage. 27: 803-814. DOI: 10.1007/s002670010189.
  • [7]. Blinn, D.W. & Cole G.A. (1991). Algal and invertebrate biota in the Colorado River: comparison of pre- and post-dam conditions. In Colorado River ecology and dam management (pp. 102-123). Washington, DC: National Academy Press.
  • [8]. Blinn, D.W., Shannon J.P., Benenati P.L. & Wilson K.P. (1998). Algal ecology in tailwater stream communities: the Colorado
  • [9]. River below Glen Canyon Dam, Arizona. J. Phycol. 34: 734¬740. DOI: 10.1046/j.1529-8817.1998.340734.x.
  • [10]. Born, S.M., Genskow K.D., Filbert T.L., Hernandez-Mora N., Keefer M.L. & White K.A. (1998). Socioeconomic and institutional dimensions of dam removals: the Wisconsin experience. Environ. Manage. 22: 359-370. DOI: 10.1007/ s002679900111.
  • [11]. Bowman, M.B. (2002). Legal perspectives on dam removal. BioScience 52: 739-747. DOI: 10.1641/0006-3568(2002)052[0739:LPODR]2.0.CO;2.
  • [12]. Brosse, S., Giraudel J.L. & Lek S. (2001). Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 146:159-166. DOI: 10.1016/S0304-3800(01)00303-9.
  • [13]. Brunke, M. (1999). Colmatation and depth filtration within streambeds: retention of particles in hyporheic interstices. Int. Rev. Hydrobiol. 84: 99-117. DOI: 10.1002/iroh.199900014.
  • [14]. Burroughs, B.A., Hayes D.B., Klomp K.D., Hansen J.F. & Mistak J. (2009). Effects of Stronach Dam removal on fluvial geomorphology in the Pine River, Michigan, United States. Geomorphology 110: 96-107. DOI: 10.1016/ j.geomorph.2009.03.019.
  • [15]. Cattaneo, A., Kerimian T., Roberge M. & Marty J. (1997). Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101-110. DOI: 10.1023/A:1003027927600.
  • [16]. Chon, T.S. (2011). Self-organizing maps applied to ecological sciences. Ecol. Inform. 6: 50-61. DOI: 10.1016/j. ecoinf.2010.11.002.
  • [17]. Chon, T.S., Park Y.S., Moon K.H. & Cha E.Y. (1996). Patternizing communities by using an artificial neural network. Ecol. Model. 90: 69-78. DOI: 10.1016/0304-3800(95)00148-4.
  • [18]. Collier, K.J. (2004). Invertebrate community dynamics in soft- bottomed streams of northern New Zealand: a spatio- temporal hierarchy. New Zeal. J. Mar. Freshw. 38: 1-18. DOI: 10.1080/00288330.2004.9517213.
  • [19]. Conti, L., Grenouillet G., Lek S. & Scardi M. (2012). Long-term changes and recurrent patterns in fisheries landings from Large Marine Ecosystems (1950-2004). Fish. Res. 119-120: 1-12. DOI: 10.1016/j.fishres.2011.12.002.
  • [20]. Cummins, K.W. (1962). An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am. Midl. Nat. 67: 477-504.
  • [21]. Death, R.G. & Winterbourn M.J. (1995). Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology 76: 1446-1460. DOI: 10.2307/1938147.
  • [22]. Dendy, F.E. & Champion W.A. (1978). Sediment deposition in United States reservoirs. Summary of data reported through 1975. Washington, DC, USA: US Department of Agriculture.
  • [23]. Dodds, W.K., Jones J.R. & Welch E.B. (1998). Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res. 32: 1455-1462. DOI: 10.1016/S0043-1354(97)00370-9.
  • [24]. Downes, B.J. (1990). Patch dynamics and mobility of fauna in streams and other habitats. Oikos 59: 411-413. DOI: 10.2307/3545153.
  • [25]. Doyle, M.W, Stanley E.H. & Harbor J.M. (2002). Geomorphic analogies for assessing probable channel response to dam removal. J. Am. Water Resour. As. 38: 1567-1579. DOI: 10.1111/j.1752-1688.2002.tb04365.x.
  • [26]. Doyle, M.W, Stanley E.H. & Harbor J.M. (2003). Channel adjustments following two dam removals in Wisconsin. Water Resour. Res. 39: 1-15. DOI: 10.1029/2002WR001714.
  • [27]. Dynesius, M. & Nilsson D. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science 266: 753-762. DOI: 10.1126/science.266.5186.753.
  • [28]. Egan, J.M. (2001). Geomorphic effects of dam removal on the Manatawny Creek, Pottstown, Pennsylvania. Unpublished M.Sc. thesis. Newark, Delaware, USA: University of Delaware.
  • [29]. Gleick, P.H., Cooley H., Cohen M.J., Marikawa M., Morrison J. & Palanappn M. (2009). Dams removed or decommissioned in the United States, 1912 to present. In P.H. Gleick (Ed.), The World’s Water 2008-2009 (pp. 239-264). Washington, DC, USA: Pacific Institute for Studies in Development, Environment, and Security, Island Press.
  • [30]. Golterman, H.L., Clymo R.S. & Ohnstad M.A.M. (1978). Method for chemical analysis of fresh waters. Oxford: Blackwell Scientific Publication.
  • [31]. Gore, J.A. (1996). Discharge measurements and stream flow analysis. In F.R. Hauer & G.A. Lamberti (Eds.), Methods in Stream Ecology (pp. 53-74). New York, USA: New York Academic Press.
  • [32]. Graber, B.E., Bowman M., Carney R.S., Doyle M.W, Fisher M., Mackey S.D. & Wildman L. (2001). Technical issues in small dam removal engineering. The future of dams and their reservoirs. Denver, CO, USA: 21st Annual USSD Lecture Series.
  • [33]. Gresens, S.E. & Lowe R.L. (1994). Periphyton patch preference in grazing chironomid larvae. J. N. Am. Benthol. Soc. 13: 89-99. Article Stable URL: http://www.jstor.org/stable/1467269.
  • [34]. Gurnell, A.M., Goodson J.M., Angold P., Morrissey I.P., Petts G.E. & Steiger J. (2004). Vegetable propagule dynamics and fluvial geomorphology. In: S.J. Bennett & A. Simon (Eds.), Riparian vegetation and fluvial geomorphology. Water science and application (pp. 209-219). Washington, DC: American Geophysical Union.
  • [35]. Hachmöller, B., Matthews R.A. & Brakke D.F. (1991). Effects of riparian community structure, sediment size, and water quality on the macroinvertebrate communities in a small, suburban stream. Northwest Sci. 65: 125-132.
  • [36]. Hart, D.D., Johnson T.E., Bushaw-Newton K.L., Horwitz R.J., BednarekA.T., Charles D.F., Kreeger D.A. &VelinskyD.J. (2002). Dam removal: challenges and opportunities for ecological research and river restoration. BioScience 52: 669-681. DOI: 10.1641/0006-3568(2002)052[0669:DRCAOF]2.0.CO;2.
  • [37]. Johnson, S.E. & Graber B.E. (2002). Enlisting the social sciences in decisions about dam removal. BioScience 52: 731-738. DOI: 10.1641/0006-3568(2002)052[0731:ETSSID]2.0.CO;2.
  • [38]. Kanehl, P.D., Lyons J. & Nelson J.E. (1997). Changes in the habitat and fish community of the Milwaukee River, Wisconsin, following removal of the Woolen Wills Dam. N. Am. J. Fish. Manage. 17: 387-400. DOI: 10.1577/1548-8675(1997)017<0387:CITHAF>2.3.CO;2.
  • [39]. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern. 43: 59-69. DOI: 10.1007/ BF00337288.
  • [40]. Kohonen, T. (2001). Self-organizing maps. Heidelberg, Germany: Springer. Lancaster, J. & Hildrew A.G. (1993). Flow refugia and the microdistribution of lotic macroinvertebrates. J. N. Am. Benthol. Soc. 12: 385-393. Article Stable URL: http://www. jstor.org/stable/1467619.
  • [41]. Lek, S., Scardi M., Verdonschot P.F.M., Descy J.P. & Park Y.S. (2005). Modelling community structure in freshwater ecosystems. Berlin, Germany: Springer.
  • [42]. Leopold, L.B. (1992). Sediment size that determines channel morphology. In P. Billi, R.D. Hey, C.R. Thorne & P. Tacconi (Eds.), Dynamics of gravel-bed rivers (pp. 297-311). New York, USA: John Wiley & Sons.
  • [43]. Li, F., Bae M.J., Kwon Y.S., Chung N., Hwang S.J., Park S.J., Park H.K., Kong D.S. & Park Y.S. (2013). Ecological exergy as an indicator of land-use impacts on functional guilds in river ecosystems. Ecol. Model. 252: 53-62. DOI: 10.1016/j. ecolmodel.2012.09.006.
  • [44]. Lisle, T.E., Cui Y., Parker G., Pizzuto J.E. & Dodd A.M. (2001). The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers: Earth Surf. Proc. Land. 26: 1409¬1420. DOI: 10.1002/esp.300.
  • [45]. Mackiewicz, S., Tejchman A., Szudek W, Jarzębińska T. & Postoła K. (1986). Start-up technical documentation of the weir in Drzewica (an expertise in Polish). Gdańsk, Poland: Gdańsk University of Technology.
  • [46]. Matthaei, C.D. & Townsend C.R. (2000). Inundated floodplain gravels in a stream with an unstable bed: temporary shelter or true invertebrate refugium? New Zeal. J. Mar. Freshw. Res. 34: 147-156. DOI: 10.1080/00288330.2000.9516922.
  • [47]. Matthaei, C.D., Werthmuller D. & Frutiger A. (1998). An update on the quantification of stream drift. Arch. Hydrobiol. 143: 1-19.
  • [48]. Matthaei, C.D., Arbuckle C.J. & Townsend C.R. (2000). Stable surface stones as refugia for invertebrates during disturbance in a New Zealand stream. J. N. Am. Benthol. Soc. 19: 82-93. DOI: 10.2307/1468283.
  • [49]. Moog, O. (1993). Quantification of daily peak hydropower effects on aquatic fauna and management to minimise environmental impacts. Regul. Rivers: Res. Mgmt. 8: 5-14. DOI: 10.1002/rrr.3450080105.
  • [50]. Morris, G.L. & Fan J. (1998). Reservoir sedimentation handbook: design and management of dams, reservoirs and watersheds for sustainable use. New York, USA: McGraw-Hill.
  • [51]. Naiman, R.J., Decamps H., Pastor J. & Johnston C.A. (1988). The potential importance of boundaries to fluvial ecosystems. J. N. Am. Benthol. Soc. 7: 289-306. Article Stable URL: http:// www.jstor.org/stable/1467295.
  • [52]. National Research Council (1992). Restoration of Aquatic Ecosystems. Washington, DC, USA: National Academy Press.
  • [53]. Oud, E. & Muir T. (1997). Engineering and economic aspects of planning, design, construction and operation of large dam projects. In T. Dorcey (Ed.), Large dams: learning from the past, looking at the future (pp. 17-39). Gland, Switzerland: The World Conservation Union, and Washington DC, USA: the World Bank.
  • [54]. Palmer, M.A., Arensburger P., Botts P.S., Hakenkamp C.C. & Reid J.W. (1995). Disturbance and the community structure of stream invertebrates: patch-specific effects and the role of refugia. Freshw. Biol. 34: 343-356. DOI: 10.1111/j.1365- 2427.1995.tb00893.x.
  • [55]. Palmer, M.A., Arensburger P., Martin A.P. & Denman D.W. (1996a). Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates. Oecologia 105: 247-257. DOI: 10.1007/ BF00328554.
  • [56]. Palmer, C.G., Maart B., Palmer A.R. & O’Keeffe J.H. (1996b). An assessment of macroinvertebrate functional feeding groups as water quality indicators in the Buffalo River, eastern Cape Province, South Africa. Hydrobiologia 318: 153-164. DOI: 10.1007/BF00016677.
  • [57]. Palmer, M.A., Covich A.P., Finlay B.J., Gibert J., Hyde K.D., Johnson R.K., Kairesalo T., Lake S., Lovell C.R., Naiman R.J., Ricci C., Sabater F. & Strayer D. (1997). Biodiversity and ecosystem processes in freshwater sediments. Ambio 26: 571-577. Article Stable URL: http://arrow.monash.edu.au/ hdl/1959.1/240557.
  • [58]. Pardo, I. & Armitage P.D. (1997). Species assemblages as descriptors of mesohabitats. Hydrobiologia 344: 111-128. DOI: 10.1023/A:1002958412237.
  • [59]. Park, Y.S., Kwak I.S., Chon T.S., Kim J.K. & J0rgensen S.E. (2001). Implementation of artificial neural networks in patterning and prediction of exergy in response to temporal dynamics of benthic macroinvertebrate communities in streams. Ecol. Model. 146: 143-157. DOI: 10.1016/S0304-3800(01)00302- 7.
  • [60]. Park, Y.S., Chung Y.J. & Moon Y.S. (2013). Hazard ratings of pine forests to a pine wilt disease at two spatial scales (individual trees and stands) using self-organizing map and random forest. Ecol. Inform. 13: 40-46. DOI: 10.1016/j. ecoinf.2012.10.008.
  • [61]. Pejchar, L. & Warner K. (2001). A river might run through it again: criteria for consideration of dam removal and interim lessons from California. Environ. Manage. 28: 561-575. DOI: 10.1007/s002670010244.
  • [62]. Penczak, T. (2011). Fish assemblages composition in a natural, then regulated, stream: A quantitative long-term study. Ecol. Model. 222: 2103-2118. DOI: 10.1016/j. ecolmodel.2011.03.032.
  • [63]. Perry, S.A. & Perry W.B. (1986). Effects of experimental flow regulation on invertebrate drift and stranding in the Flathead and Kootenai Rivers, Montana, USA. Hydrobiologia 134: 171-182. DOI: 10.1007/BF00006739.
  • [64]. Petersen Jr., R.C., Cummins K.W. & Ward G.M. (1989). Microbial and animal processing of detritus in a woodland stream. Ecol. Monogr. 59: 21-39. Article Stable URL: http:// www.jstor.org/stable/2937290.
  • [65]. Petts, G.E. (1984). Impounded rivers. Perspectives for ecological management. Chichester, Great Britain: John Wiley and Sons.
  • [66]. Pizzuto, J. (2002). Effects of dam removal on river form and process. Bio Science 52: 683-691. DOI: 10.1641/0006-3568(2002)052[0683:EODROR]2.0.CO;2.
  • [67]. Poff, L.N. & Hart D.D. (2002). How dams vary and why it matters for the emerging science of dam removal. BioScience 52: 659-668. DOI: 10.1641/0006-3568(2002)052[0659:HDVAWI]2.0.CO;2.
  • [68]. Pohl, M. (2003). American dam removal census: available data and data needs. Chapter 2. In W.L. Graf (Ed.), Dam Removal Research: Status and Prospects. Washington, DC, USA: The H. John Heinz III Center for Science, Economics and the Environment.
  • [69]. Pollard, A.I. & Reed T. (2004). Benthic invertebrate assemblage change following dam removal in a Wisconsin stream. Hydrobiologia 513: 51-58. DOI: 10.1023/B:hydr.0000018164.17234.4f.
  • [70]. Qu, X.D., Bae M.J., Chon T.S. & Park Y.S. (2013). Evaluation of subsampling efforts in estimating community indices and community structures. Ecol. Inform. 17: 3-13. DOI: 10.1016/j.ecoinf.2013.06.005.
  • [71]. Quinn, J.M. & Hickey C.W. (1990). Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in 88 New Zealand rivers. New Zeal. J. Mar. Freshw. Res. 24: 411-427. DOI: 10.1080/00288330.1990.9516433.
  • [72]. Rae, J.G. (1987). The effects of flooding and sediment size on the structure of a stream midge assemblage. Hydrobiologia 144: 3-10. DOI: 10.1007/BF00008046.
  • [73]. Randle, T.J., Young C.A., Melena J.T. & Ouellette E.M. (1996). Sediment analysis and modeling of the river erosion alternative. Boise, Idaho, USA: U.S. Department of the Interior, Bureau of Reclamation, Elwha Technical Series PN-95-9.
  • [74]. River Alliance of Wisconsin and Trout Unlimited (2000). Dam removal. A citizen’s guide to restoring rivers. Madison, WI, USA: River Alliance of Wisconsin. ISBN 0-9710921-0-9.
  • [75]. Robinson, C.T., Uehlinger U. & Monaghan M.T. (2003a). Effects of a multi-year experimental flood regime on macroinvertebrates downstream of a reservoir. Aquat. Sci. 65: 210-222. DOI: 10.1007/s00027-003-0663-8.
  • [76]. Robinson, C.T., Uehlinger U. & Monaghan M.T. (2003b). Stream ecosystem response to multiple experimental floods from a reservoir. River Res. Appl. 20: 359-377. DOI: 10.1002/rra.743.
  • [77]. Sawaske, S.R. & Freyberg D.L. (2012). A comparison of past small dam removals in highly sediment-impacted systems in the U.S. Geomorphology 151: 50-58. DOI: 10.1016/j. geomorph.2012.01.013.
  • [78]. Scrimgeour, G.J., Davidson R.J. & Davidson J.M. (1988). Recovery of benthic macroinvertebrate and epilithic communities following a large flood, in an unstable, braided, New Zealand river. New Zeal. J. Mar. Freshw. Res. 22: 337¬344. DOI: 10.1080/00288330.1988.9516306.
  • [79]. Shafroth, P.B., Friedman J.M., Auble G.T., Scott M.L. & Braatne J.H. (2002). Potential responses of riparian vegetation to dam removal. BioScience 52: 703-712. DOI: 10.1641/0006-3568(2002)052[0703:PRORVT]2.0.CO;2.
  • [80]. Shuman, J.R. (1995). Environmental considerations for assessing dam removal alternatives for river restoration. Regul. Rivers: Res. Mgmt. 11: 249-261. DOI: 10.1002/rrr.3450110302.
  • [81]. Smith, L.W., Dittmer E., Prevost M. & Burt D.R. (2000). Breaching of a small irrigation dam in Oregon: a case history. N. Am. J. Fish. Manage. 20: 205-219. DOI: 10.1577/1548-8675(2000)020<0205:BOASID>2.0.CO;2.
  • [82]. Stanley, E.H., Luebke M.A., Doyle M.W. & Marshall D.W. (2002). Short-term changes in channel form and macroinvertebrate communities following low-head dam removal. J. N. Am. Benthol. Soc. 21: 172-187. Article Stable URL: http://www. jstor.org/stable/1468307.
  • [83]. StatSoft Inc. (2011). STATISTICA [data analysis software system] version 10. www.statsoft.com.
  • [84]. Steiger, J., Tabacchi E., Dufour S., Corenblit D. & Peiry J.L. (2005). Hydrogeomorphic processes affecting riparian habitat within alluvial channel-floodplain river systems: a review for the temperate zone. River Res. Appl. 21: 719-737. DOI: 10.1002/rra.879.
  • [85]. Szczerkowska-Majchrzak, E., Grzybkowska M. & Dukowska M. (2010). Effect of flow fluctuations on patch dynamics and chironomid distribution in a medium-sized lowland river. J. Freshw. Ecol. 25: 437-448. DOI: 10.1080/02705060.2010.9664387.
  • [86]. Szczerkowska-Majchrzak, E., Lik J. & Leszczyńska J. (2015). Resistance of riverine macroinvertebrate assemblages to hydrological extremes. Oceanol. Hydrobiol. St. 43: 402-417. DOI: 10.2478/s13545-014-0159-2.
  • [87]. Szudek, W., Mackiewicz S., Jarzębińska T. & Łuczak A. (1989). A hydraulic parameter study and a technical assessment of the weir in Drzewica for variable operating conditions (an expertise in Polish). Gdańsk: Gdańsk University of Technology.
  • [88]. Troelstrup, N.H. & Hergenrader G.L. (1990). Effect of hydropower peaking flow fluctuations on community structure and feeding guilds of invertebrates colonizing artificial substrates in a large impounded river. Hydrobiologia 199: 217-228. DOI: 10.1007/BF00006354.
  • [89]. Tszydel, M., Grzybkowska M., Szczerkowska E. & Dukowska M. (2004). Dam and canoeing track-induced modifications to the lowland river flow patterns and their caddis biodiversity implications. Teka Kom. Ochr. Kszt. Środ. Przyr. 1: 282-292.
  • [90]. Tszydel, M., Grzybkowska M. & Kruk A. (2009). Influence of dam removal on trichopteran assemblages in the lowland Drzewiczka River, Poland. Hydrobiologia 630: 75-89. DOI: 10.1007/s10750-009-9781-1.
  • [91]. Vesanto, J. & Alhoniemi E. (2000). Clustering of the Self-Organizing Map. IEEE Trans. Neural Networks 11: 586-600. DOI: 10.1109/72.846731.
  • [92]. Vesanto, J., Himberg J., Alhoniemi E. & Parhankangas J. (2000). SOM Toolbox for Matlab 5. Report A57. Helsinki, Finland: Neural Networks Research Centre, Helsinki University of Technology.
  • [93]. Walker, L.R., Zasada J.C. & Chapin F.S. (1986). The role of life history processes in primary succession on an Alaskan floodplain. Ecology 67: 1243-1253. Article Stable URL: http://www.jstor.org/stable/1938680.
  • [94]. Ward Jr., J.H. (1963). Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58: 236-244. DOI: 10.1080/01621459.1963.10500845.
  • [95]. Żmudziński, L., Kornijów R., Bolałek J., Górniak A., Olańczuk- Neyman K., Pęczalska A. & Korzeniewski K. (2002). Dictionary of hydrobiology. Terms, concepts, interpretations (in Polish). Warsaw, Poland: Polish Scientific Publisher.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-73011ea5-5a4c-4aec-8264-4f3255421816
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.