PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ship’s de-perming process using coils lying on seabed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A ship built from ferromagnetic steel disturbs the uniformity of the Earth’s magnetic field. Changes of ship’s signature are due to the magneto-mechanical interaction of the hull with the Earth’s magnetic field. The ship’s magnetic field can be detected by a magnetic naval mine. For this reason, the vessel has to be demagnetized. There are several methods of ship’s de-perming. The results of experimental and computer simulations of the ship’s de-perming process using coils lying on the seabed are presented in this paper. The simulation of the de-perming process with a hysteresis model of ship’s steel was carried out in Opera-3d 18R2. The laboratory experiments were carried out using a physical ship’s model, several Helmholtz coils, magneto-resistive sensors, etc. The experiments and computer simulations have shown that ship’s de-perming with coils lying on the seabed is possible. The values of coil currents are over dozen times greater than those used in the standard method.
Słowa kluczowe
Rocznik
Strony
569--579
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Gdańsk University of Technology, Faculty of Electrical and Control Engineering, G. Narutowicza 11/12,80-233 Gdańsk, Poland
  • Gdynia Maritime University, Faculty of Marine Electrical Engineering, Morska 81-87, 81-225 Gdynia, Poland
Bibliografia
  • [1] Holmes, J. (2008). Reduction of a Ship’s Magnetic Field Signatures, Synthesis Lectures on Computational Electromagnetics. Morgan & Claypool Publishers.
  • [2] Payne, C.M. (2006). Principles of Naval Weapon Systems. Naval Institute Press.
  • [3] Raveendra, V.R. (2013). Design of Degaussing System and Demonstration of Signature Reduction on Ship Model through Laboratory Experiments. Physics Procedia, 54, 174-179.
  • [4] Chadebec, O., et al. (2004). Magnetization identification problem - illustration of an effective approach. COMPEL, 23(2), 518-530.
  • [5] Ki-Chan, K., et al. (2011). Remnant Magnetization Prediction in the Demagnetization Process by Orthogonal Magnetic Field. IEEE Transaction on Magnetics, 47(10), 4360-4363.
  • [6] Holmes, J. (2008). Exploitation of a Ship’s Magnetic Field Signatures. Morgan & Claypool, San Rafael, CA, USA.
  • [7] http://imgur.com/4CWBdfs. Admiral Gorshkov-class-frigate during demagnetization, Feb. 2018.
  • [8] Woloszyn, M., Jankowski P. (2017). Simulation of ship’s deperming process using Opera-3d. IEEE Xplore.
  • [9] Opera-3d, User Guide 2017, Cobham Technical Services, Kidlington, OX5 1LH UK.
  • [10] Jakubiuk, K., Woloszyn, M, Ogonowski, A. (2009). Technology demonstrator of dynamic demagnetization. Report Gdańsk University of Technology.
  • [11] Hongwen, H., et al. (2017). Tolerance analysis electrified vehicles on the motor demagnetization fault: From an energy perspective, https://doi.org/10.1016/j.apenergy.2017.08.226.
  • [12] Jankowski, P., Dudojc, B., Mindykowski, J. (2009). Simple method of dynamic displacement record of contacts driven by inductive dynamic drive. Metrol. Meas. Syst., 16(1), 5-18.
  • [13] Lebkowski, A., Dziedzicki, K., Tobiasz, M., et al. (2006). A marine environment simulator for testing ship control systems in dangerous situations. Biometrics, Computer Security Systems and Artificial Intelligence Applications, 237-246.
  • [14] Smierzchalski, R, Lebkowski, A. (2003). Moving objects in the problem of path planning by evolutionary computation. Neural Networks and Soft Computing Book Series: Advances in Soft Computing, 382-387.
  • [15] Jankowski, P., Mindykowski, J. (2012). Measurement of quantities characterizing the properties of an inductive dynamic drive. Przegląd Elektrotechniczny, 88(12A), 78-82.
  • [16] Jankowski, P., Woloszyn, M. (2018). Applying of thin plate boundary condition in analysis of ship’s magnetic field, COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 37(5), SI, 1609-1617.
  • [17] Jakubiuk, K., Zimny, P., Woloszyn M. (2011). Analysis of magnetic field distribution inside ferromagnetic thin shells during degaussing process. Proc. of the 15th International Symposium on Applied Electromagnetics and Mechanics, Napoli, 231-232.
  • [18] Woloszyn, M., Zimny, P., Jakubiuk, K. (2012). Multidipoles model of ship’s magnetic field. International Journal of Applied Electromagnetics and Mechanics, 39 (1-4), 183-189.
  • [19] Voigt, J., et al. (2013). Measures to reduce the residual field and field gradient inside a magnetically shielded room by a factor of more than 10. Metrol. Meas. Syst., 20(2), 239-248.
  • [20] Thiel, F., et al. (2007). Demagnetization of magnetically shielded rooms. Review of Scientific Instruments, 78.
  • [21] Bork, J., et al. (2000). The 8-layered magnetically shielded room of the PTB. Biomag Proceedings, 970-973.
  • [22] Jakubiuk, K., et. al. (2010). System for magnetic field measurement in degaussing process of ships. Przegląd Elektrotechniczny, 86(9), 39-42.
  • [23] Le Dorze, F., et al.( 1998). Modeling of degaussing coils effects in ships by the method of reduced scalar potential jump. IEEE Transaction on Magnetics, 34, 2477-2480.
  • [24] Lee, K., et al. Implementation of material sensitivity analysis for determining unknown remanent magnetization of a ferromagnetic thin shell. IEEE Transaction on Magnetics, 45, 1478-1481.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72fedfa5-1aa8-4f61-b766-325a0d576547
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.