PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Axial splitting of empty and foam-filled circular composite tubes – An experimental study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper studies the effects of polyurethane foam-filler on the axial splitting process of circular composite tubes under the axial quasi-static loading, experimentally. A shear mode of failure in circular composite tubes is initiated by crushing the tube onto a conical die to absorb the energy. The effects of conical die angle, number of fiber fabric layers, resin type and also, diameter and fiber fabric type of the tubes on axial load, energy absorption and specific absorbed energy by the structure are studied. Experimental results show that the polyurethane foam-filler increases energy absorption capability by the tubes. Also, it is found that in the investigated domain, composite tubes with smaller diameters are better energy absorbers, comparing with the composite tubes with larger diameters. Experiments show that foam-filled circular tubes under the axial compression in the splitting process works as good energy dissipater.
Rocznik
Strony
650--662
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Yasouj University, P.O. Box 75914-353, Yasouj, Iran
autor
  • Mechanical Engineering Department, Yasouj University, P.O. Box 75914-353, Yasouj, Iran
autor
  • Mechanical and Aerospace Engineering Department, Shiraz University of Technology, Shiraz, Iran
  • Mechanical Engineering Department, Tarbiat Modares University, P.O. Box 14115-143, Tehran, Iran
Bibliografia
  • [1] M.R. Bambach, H.H. Jama, M. Elchalakani, Static and dynamic axial crushing of spot-welded thin-walled composite steel- CFRP square tubes, International Journal of Impact Engineering 36 (2009) 1083–1094.
  • [2] M.A. Jimenez, A. Miravete, E. Larrodé, D. Revuelta, Effect of trigger geometry on energy absorption in composite profiles, Composite Structures 48 (2000) 107–111.
  • [3] A. Niknejad, G.H. Liaghat, H. Moslemi Naeini, A.H. Behravesh, Experimental and theoretical investigation of the first fold creation in thin walled columns, Acta Mechanica Solida Sinica 23 (4) (2010) 353–360.
  • [4] A. Niknejad, B. Rezaei, G.H. Liaghat, Empty circular metal tubes in the splitting process – theoretical and experimental studies, Thin-Walled Structures 72 (2013) 48–60.
  • [5] N.A. Warrior, T.A. Turner, F. Robitaille, C.D. Rudd, Effect of resin properties and processing parameters on crash energy absorbing composite structures made by RTM, Composites: Part A 34 (2003) 543–550.
  • [6] E. Mahdi, A.S.M. Hamouda, A.S. Mokhtar, D.L. Majid, Many aspects to improve damage tolerance of collapsible composite energy absorber devices, Composite Structures 67 (2005) 175–187.
  • [7] E. Mahdi, H. Sultan, A.M.S. Hamouda, A.A. Omer, A.S. Mokhtar, Experimental optimization of composite collapsible tubular energy absorber device, Thin-Walled Structures 44 (2006) 1201– 1211.
  • [8] E.F. Abdewi, S. Sulaiman, A.M.S. Hamouda, E. Mahdi, Quasi- static axial and lateral crushing of radial corrugated composite tubes, Thin-Walled Structures 46 (2008) 320–332.
  • [9] S.A. Oshkovr, R.A. Eshkoor, S.T. Taher, A.K. Ariffin, C.H. Azhari, Crashworthiness characteristics investigation of silk/ epoxy composite square tubes, Composite Structures 94 (2012) 2337–2342.
  • [10] A. Niknejad, H. Assaee, S.A. Elahi, A. Golriz, Flattening process of empty and polyurethane foam-filled E-glass/ vinylester composite tubes – an experimental study, Composite Structures 100 (2013) 479–492.
  • [11] A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, P.K. Kostazos, D.P. Papapostolou, Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modeling, Composite Structures 58 (2002) 571–582.
  • [12] A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, P.K. Kostazos, Crushing of hybrid square sandwich composite vehicle hollow bodyshells with reinforced core subjected to axial loading: numerical simulation, Composite Structures 61 (2003) 175–186.
  • [13] S.T. Taher, R. Zahari, S. Ataollahi, F. Mustapha, S.N. Basri, A double-cell foam-filled composite block for efficient energy absorption under axial compression, Composite Structures 89 (2009) 399–407.
  • [14] S. Solaimurugan, R. Velmurugan, Progressive crushing of stitched glass/polyester composite cylindrical shells, Composites Science and Technology 67 (2007) 422–437.
  • [15] N.A. Warrior, T.A. Turner, E. Cooper, M. Ribeaux, Effects of boundary conditions on the energy absorption of thin-walled polymer composite tubes under axial crushing, Thin-Walled Structures 46 (2008) 905–913.
  • [16] T. Niezgoda, W. Barnat, Numerical–experimental investigation of failure energy of composite energy absorbing panels, Journal of KONES Powertrain and Transport 14 (4) (2007) 307–318.
  • [17] W. Barnat, P. Dziewulski, T. Niezgoda, R. Panowicz, Application of composites to impact energy absorption, Computational Materials Science 50 (4) (2011) 1233–1237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72fce830-8d55-42a1-9c44-5ebf15208347
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.