PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental approach to modeling of the plasticizing operation in the hot plate welding process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper discusses the topic of butt welding of polyurethane drive belts by the hot plate method in the context of modeling the process of this technological operation. Based on the analysis of the butt welding process, a series of studies of the thermomechanical properties of the material from which the belt is made has been planned. The results will be used for mathematical modeling of the welding process, and in particular its most important phase: the plasticizing operation. On this basis, the study of the compression of cylindrical specimens taken from the belt has been performed at two different speeds. Their result is the relationship between the compressive stress σc and the modulus of longitudinal elasticity Ec at compression and: deformation εc, temperature value T, as well as the compressive velocity vc. In the next step, dynamic viscosity η of the belt material was determined based on the results of dynamic thermomechanical analysis. The research work culminated in the attempts to plasticize the material on a hot plate, in conditions similar to the process of industrial welding. These studies were performed at different speeds vpl, resulting in the correlation between the force required for plasticizing Fpl and the value of the speed of the belt end vpl relative to the hot plate heated to a temperature Tp. The obtained results will be used to formulate a mathematical model of plasticizing the material, based on the selected mechanical deformation models.
Rocznik
Strony
art. no. e16, 2022
Opis fizyczny
Bibliogr. 72 poz., fot., rys., wykr.
Twórcy
  • Institute of Machine Design, Poznan University of Technology, Piotrowo Street 3, 61-138 Poznan, Poland
  • Institute of Machine Design, Poznan University of Technology, Piotrowo Street 3, 61-138 Poznan, Poland
  • Institute of Machine Design, Poznan University of Technology, Piotrowo Street 3, 61-138 Poznan, Poland
autor
  • Institute of Machine Design, Poznan University of Technology, Piotrowo Street 3, 61-138 Poznan, Poland
  • Institute of Machine Design, Poznan University of Technology, Piotrowo Street 3, 61-138 Poznan, Poland
Bibliografia
  • 1. Wałęsa K, Malujda I, Talaśka K, Wilczyński D. Process analysis of the hot plate welding of drive belts. Acta Mech et Auto. 2020;14(2):84–90. https://doi.org/10.2478/ama-2020-0012.
  • 2. Wojtkowiak D, Talaśka K. Evaluation of the belt punching process efficiency based on the resistance force of the compressed material. Int J Adv Manuf Technol. 2020;110:717–27. https://doi.org/10.1007/s00170-020-05819-4.
  • 3. Behabelt. Product Catalogue 2019/2020. Glottertal: Behabelt; 2019.
  • 4. Wałęsa K, Malujda I, Talaśka K. Butt welding of round drive belts. Acta Mech Autom. 2018;12(2):115–26. https://doi.org/10.2478/ama-2018-0019.
  • 5. Wałȩsa K, Malujda I, Wilczyński D. Shaping the Parameters of Cylindrical Belt Surface in the Joint Area. Acta Mech Autom. 2020;13(4):255–61. https://doi.org/10.2478/ama-2019-0035.
  • 6. Grewell D, Benatar A. Welding of plastics: Fundamentals and new developments. Int Polym Process. 2007;22(1):43–60. https://doi.org/10.3139/217.0051.
  • 7. Amanat N, James NL, McKenzie DR. Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices. Med Eng Phys. 2010;32(7):690–9. https://doi.org/10.1016/j.medengphy.2010.04.011.
  • 8. Oliveira MJ, Bernardo CA, Hemsley DA. Morphology and mechanical behaviour of Polypropylene hot plate welds. Polym Eng Sci. 2004;41(11):1913–22. https://doi.org/10.1002/pen.10888.
  • 9. Lin TT, Staicovici S, Benatar A. Non-contact hot plate welding of polypropylene. Annu Tech Conf ANTEC Conf Proc. 1996;1:1260–3.
  • 10. Stokes VK. A phenomenological study of the hot-tool welding of thermoplastics. Part 1: polycarbonate. Polymer. 1999;40(23):6235–63. https:// doi. org/ 10. 1016/ S0032- 3861(98) 00584-9.
  • 11. Watson MN, Murch MG. Recent developments in hot plate welding of thermoplastics. Polym Eng Sci. 1989;29(19):1382–6. https://doi.org/10.1002/pen.760291909.
  • 12. Gehde M, Bevan L, Ehrenstein GW. Analysis of the deformation of polypropylene hot-tool butt welds. Polym Eng Sci. 1992;32(9):586–92. https://doi.org/10.1002/pen.760320904.
  • 13. Stokes VK. Experiments on the hot-tool welding of three dissimilar thermoplastics. Polymer. 1998;39(12):2469–77. https://doi.org/10.1016/S0032-3861(97)00569-7.
  • 14. Stokes VK. Toward a weld-strength data base for hot-tool welding of thermoplastics. Annu Tech Conf ANTEC Conf Proc. 1995;1:1280–4.
  • 15. Stokes VK. The vibration and hot-tool welding of polyamides. Polym Eng Sci. 2001;41(8):1427–39. https://doi.org/10.1002/pen.10842.
  • 16. Stokes VK. The hot-tool and vibration welding of Acrylonitrile-Butadiene-Styrene. Polym Eng Sci. 1997;37(4):692–701. https://doi.org/10.1002/pen.11713.
  • 17. Stokes VK. Hot-tool and vibration welding of Poly(vinyl chloride). J Vinyl Addit Technol. 2000;6(3):158–65. https://doi.org/10.1002/vnl.10245.
  • 18. Potente H. Zur Theorie des Heizelement-Stumpfschweißens. Kunstoffe. 1977;2:98–102.
  • 19. Potente H, Schneiders J, Bornemann M. Theoretical model for the one-dimensional temperature and stress calculation of simple hot plate welded geometries. Macrmol Mater Eng. 2002;287(11):843–53. https:// doi. org/ 10. 1002/ mame. 200290014.
  • 20. Potente H, Brüßel A. Investigations into increasing weld strength through the use of profiled hot plates. Annu Tech Conf ANTEC Conf Proc. 1997;1:1233–7.
  • 21. Liu SJ, Cheng HF. The influence of interface geometry on the joint strengths of hot plate welded composites. J Reinf Plast Compos. 2010;29(4):497–509. https://doi.org/10.1177/0731684408099410.
  • 22. Potente H, Tappe P. Scale-up laws in heated tool butt welding of HDPE and pp. Polym Eng Sci. 1989;29(23):1642–8. https://doi.org/10.1002/pen.760292304.
  • 23. Potente H, Natrop J. Computer-Aided optimization of the parameters of heated-tool butt welding. Polym Eng Sci. 1989;29(23):1649–54. https://doi.org/10.1002/pen.760292305.
  • 24. Potente H, Schöppner V, Hoffschlag R, Gövert S, Schnieders J. In-line process optimization of hot-tool welding using innovative actuation concept. Annu Tech Conf ANTEC Conf Proc. 2009;1:745–9.
  • 25. Schnieders J, Büssing M, Potente H. High speed hot plate welding. Annu Tech Conf ANTEC Conf Proc. 2006;1:2216–20.
  • 26. Nonhof CJ. Optimization of hot plate welding for series and mass production. Polym Eng Sci. 1996;36(9):1184–95. https://doi.org/10.1002/pen.10512.
  • 27. Cocard M, Grozav I, Iacob M, Caneparu A. Establishing the optimum welding procedure for PE 100 polyethylene pipelines using the Response Surface Design. Mater Plast. 2009;46(4):452–7.
  • 28. Poopat B, Wu C-Y, Benatar A, Park JB. Optimization of contact hot plate welding of HDPE. Annu Tech Conf ANTEC Conf Proc. 1999;1:1386–90.
  • 29. Poopat B, Benatar A. Gas-assisted non-contact hot plate welding of HDPE. Annu Tech Conf ANTEC Conf Proc. 2002;1:879–84.
  • 30. Mokhtarzadeh A, Wu CY, Benatar A. Comparison of hot plate and vibration welding of PMMA to Polycarbonate. Annu Tech Conf ANTEC Conf Proc. 2008;1:851–61.
  • 31. Mokhtarzadeh A, Benatar A, Wu CY. Comparison of hot plate, vibration, infrared and combined infrared with vibration welding of ASA. Annu Tech Conf ANTEC Conf Proc. 2011;1:1793–8.
  • 32. Riahi M, Kooshayan K, Ghanati MF. Analysis of effect of pressure and heat on mechanical characteristics of butt fusion welding of polyethylene pipes. Polym Plast Technol Eng. 2011;50(9):907–15. https://doi.org/10.1080/03602559.2011.551982.
  • 33. Oliveira MJ, Duarte FM, Tchalamov D, Cunha AM. Hot plate welding of glass reinforced polypropylene. Annu Tech Conf ANTEC Conf Proc. 2001;1:1251–5.
  • 34. Wood AS. The butt-fusion welding of polymers. Chem Eng Sci. 1993;48(17):3071–82. https:// doi. org/ 10. 1016/ 0009- 2509(93)80173-N.
  • 35. Yoo JH, Choi S, Nam J, Ahn KH, Oh JS. Numerical analysis of the heat transfer and fluid flow in the butt-fusion welding process. Korea-Australia Rheol J. 2017;29(1):37–49. https://doi.org/10.1007/s13367-017-0005-3.
  • 36. Ezekoye OA, Lowman CD, Fahey MT, Hulme-Lowe AG. Polymer weld strength predictions using a thermal and polymer chain diffusion analysis. Polym Eng Sci. 1998;38(6):976–91. https://doi.org/10.1002/pen.10266.
  • 37. Nieh JY, Ni J, Lee J. Hot plate welding of Polypropylene. Part II: process simulation. Polym Eng Sci. 1998;38(7):1133–41. https://doi.org/10.1002/pen.10280.
  • 38. Lee BY, Kim JS, Lee SY, Kim YK. Butt-welding technology for double walled Polyethylene pipe. Mater Des. 2012;35:626–32. https://doi.org/10.1016/j.matdes.2011.10.014.
  • 39. Savija I, Culham JR, Yovanovich MM. Effective thermophysical properties of thermal interface materials: part I—definitions and models. Adv Electron Packag. 2003;2:189–200. https://doi.org/10.1115/IPACK2003-35088.
  • 40. Kim G, Kim T, Jeong S. A study on thermal characteristics according to thermal contact resistance in hot plate welding process. In: 2009 IEEE Inte Sym Ind El 2009, pp. 1990-1995. https://doi.org/10.1109/ISIE.2009.5214086.
  • 41. Myers TG, Mitchell SL, Muchatibaya G. Unsteady contact melting of a rectangular cross-section material on a flat plate. Phys Fluids. 2008;20: 103101. https://doi.org/10.1063/1.2990751.
  • 42. Poslinski AJ, Stokes VK. Steady melting of rectangular thermo-plastic bars induced by hot contacting surfaces. Polym Eng Sci. 1992;32(16):1147–62. https://doi.org/10.1002/pen.760321612.
  • 43. Wałęsa K, Biszczanik A, Malujda I, Wilczyński D. Assumptions for modelling of the hot plate welding process considering the automatic welding machine design. Machine Modelling and Simulation 2020 Conference Proceedings (bin press).
  • 44. Klimpel A. Welding of termoplastics materials. Gliwice: Wydawnictwo Politechniki Śląskiej; 2000. (in Polish).
  • 45. Wałęsa K, Malujda M, Górecki J, Wilczyński D. The temperaturę distribution during heating in hot plate welding process. MATEC Web Conf. 2019;254:02033. https://doi.org/10.1051/matecconf/201925402033.
  • 46. Gruin I. Polymers. Warszawa: Państwowe Wydawnictwo Naukowe; 2003. (in Polish).
  • 47. Wirpsza Z. Polyurethanes: chemical composition, technology, application. Warszawa: Wydawnictwo Naukowo-Techniczne; 1991. (in Polish).
  • 48. Parasiewicz W, Rzymski WM. Elastomers and rubbers industry. Łódź: IPGUM Piastów-Łódź; 2006. (in Polish).
  • 49. Qi HJ, Boyce MC. Stress-strain behaviour of thermoplastic polyurethanes. Mech Mater. 2005;37:817–39. https://doi.org/10.1016/j.mechmat.2004.08.001.
  • 50. Boyce MC, Kear K, Socrate S, Shaw K. Deformation of thermo-plastic vulcanizates. J Mech Phys Solid. 2001;49:1073–98. https://doi.org/10.1016/S0022-5096(00)00066-1.
  • 51. Kukla M, Warguła Ł, Talaśka K, Wojtkowiak D. Magnetorheological elastomer stress relaxation behaviour during compression: experiment and modelling. Materials. 2020;13(21):4795. https://doi.org/10.3390/ma13214795.
  • 52. Drozdov AD, Christiansen JC. Constitutive equations for the nonlinear viscoelastic and viscoplastic behaviour of thermoplastic elastomers. Int J Eng Sci. 2006;44:205–26. https://doi.org/10.1016/j.ijengsci.2005.12.002.
  • 53. Wang Y, Luo W, Huang J, Peng C, Wang H, Yuan C, Chen G, Zeng B, Dai L. Simplification of hyperelastic constitutive model and finite element analysis of Thermoplastic Polyurethane Elastomers. Mactomol Theoret Simul. 2020;29:2000009. https://doi.org/10.1002/mats.202000009.
  • 54. Lambert-Diani J, Rey C. New phenomenological behaviour laws for rubbers and thermoplastic elastomers. Eur J Mech A/Solids. 1999;18:1027–43. https://doi.org/10.1016/S0997-7538(99)00147-3.
  • 55. Das S, Chowdhury SR, Roy D. A constitutive model for thermoplastics based on two temperatures. Eur J Mech A/Solids. 2018;72:440–51. https:// doi. org/ 10. 1016/j. eurom echsol. 2018.06.010.
  • 56. Eberlein R, Pasieka L, Rizos D. Validation of advanced constitutive models for accurace FE modelling of TPU. Adv Mater Lett. 2019;10(12):893–8. https://doi.org/10.5185/amlett.2019.0031.
  • 57. Henze O. Increasing of the end-use temperature of TPU products. Annu Tech Conf ANTEC Conf Proc. 2005;1:3616–9.
  • 58. Yildirim E, Yurtsever M, Wilkes GL, Yilgör I. Effect of intersegmental interactions on the morphology of segmented polyurethanes with mixed soft segments: a coarse-grained simulation study. Polymer. 2016;90:204–14. https://doi.org/10.1016/j.polymer.2016.03.008.
  • 59. Krawiec P, Różański L, Czarnecka-Komorowska D, Warguła Ł. Evaluation of the thermal stability and surface characteristics of Thermoplastic Polyurethane V-Belt. Materials. 2020;13(7):1502. https://doi.org/10.3390/ma13071502.
  • 60. Wałęsa K, Mysiukiewicz O, Pietrzak M, Górecki J, Wilczyński D. Preliminary research of the thermomechanical properties of the round drive belts. MATEC Web Conf. 2019;254:06007. https://doi.org/10.1051/matecconf/201925406007.
  • 61. Wałęsa K, Malujda I, Górecki J. Experimental research of the mechanical properties of the round drive belts made of thermoplastic elastomer. IOP Conf Ser Mater Sci Eng. 2020;776(1): 012107. https://doi.org/10.1088/1757-899X/776/1/012107.
  • 62. Wałęsa K, Malujda I, Wilczyński D. Experimental research of the thermoplastic belt plasticizing process in the hot plate welding. IOP Conf Ser Mater Sci Eng. 2020;776(1): 012011. https://doi.org/10.1088/1757-899X/776/1/012011.
  • 63. Wilczyński K. Rheology in polymer processing. Warszawa: Wydawnictwo Naukowo-Techniczne; 2001. (in Polish).
  • 64. Dziubiński M, Kijański T, Sęk J. Theoretical basis and measurement methods of rheology. Łódź: Wydawnictwo Politechniki Łódzkiej; 2014. (in Polish).
  • 65. Stabik J. Selected problems of rheology of plasticized filled polymers. Gliwice: Wydawnictwo Politechniki Śląskiej; 2004. (in Polish).
  • 66. Hu J, Mo R, Jiang X, Sheng X, Zhang X. Towards mechanical robust yet self-healing polyurethane elastomers via combination of dynamic main chain and dangling quadruple hydrogen bonds. Polymer. 2019;183: 121912. https://doi.org/10.1016/j.polymer.2019.121912.
  • 67. Knitter M, Dobrzyńska-Mizera M. Mechanical properties of isotactic polypropylene modified with thermoplastic potato starch. Mech Compos Mater. 2015;51(2):245–52. https://doi.org/10.1007/s11029-015-9496-5.
  • 68. Kiljański T. Methods of resilient properties measurement. Inż Ap Chem. 2014;53(5):344–6 (in Polish).
  • 69. Yuegang L, Zhuo M, Yacheng W, Peibo L, Yize S. Analysis and modeling of viscosity for aqueous Polyurethane dispersion as a function of shear rate, temperature and solid content. ACS Omega. 2020;5:26237–44. https://doi.org/10.1021/acsomega.0c03959.
  • 70. Sopade PA, Halley P, Bhandari B, D’Arcy B, Doebler C, Caffin N. Application of the Williams-Landel-Fery model to the viscosity-temperature relationship of Austrialian honeys. J Funct Eng. 2002;56:67–75. https://doi.org/10.1016/S0260-8774(02)00149-8.
  • 71. Perko L, Friesenbichler W, Obendauf W, Buchebner V, Chaloupka G. Elongational viscosity of rubber compounds and improving corresponding models. Adv Prod Eng Manuf. 2013;8(2):126–33. https://doi.org/10.14743/apem2013.2.160.
  • 72. Carslaw HS, Jeager JC. Conduction of heat in solids. Oxford: At the Clarendon Press; 1959.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72fb043e-b8ad-4e1b-b221-dec19c27dccd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.