PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of the Fenton Oxidation of Synthetic Textile Wastewater Using Response Surface Methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja utleniania odczynnikiem Fentona syntetycznych ścieków z produkcji tekstyliów przy zastosowaniu metody powierzchni odpowiedzi
Języki publikacji
EN
Abstrakty
EN
This article presents the possibility of using the classical Fenton process (Fe(II)/H2O2) to purify synthetic textile wastewater (COD=1872 mg O2/dm3, TOC=660 mg/dm3) containing azo dye Anilan Blue GRL 250% (200 mg/dm3) and Sodium Lauryl Sulphate (SLS) as anionic surfactant at a concentration of 95 mg/dm3. Model studies were carried out using RSM, obtaining a good fit of approximated values to experimental values (R2=0.9461 and R2adj=0.7379). For optimal process parameters (pH 3, Fe(II) 0.85 g/dm3, H2O2 14.5 g/dm3), complete decolourisation (3) was achieved as well as a reduction in COD, TOC and SLS concentrations to 83%, 44% and 98%, respectively.
PL
W artykule przedstawiono możliwość zastosowania klasycznego procesu Fentona (Fe(II)/ H2O2) do oczyszczania syntetycznych ścieków tekstylnych (COD=1872 mg O2/dm3, TOC=660 mg/dm3), zawierających barwnik azowy Anilan Blue GRL 250% (200 mg/dm3) oraz surfaktant anionowy Sodium Lauryl Sulphate (SLS) o stężeniu 95 mg/dm3. Badania modelowe prowadzono z zastosowaniem RSM, otrzymując dobre dopasowanie wartości aproksymowanych do wartości doświadczalnych (R2=0.8795 oraz R2adj=0.7992). Dla optymalnych parametrów procesu (pH 3, Fe(II) 0,85 g/dm3, H2O2 14,5 g/dm3) uzyskano całkowite odbarwienie ścieków (3) oraz zmniejszenie wartości COD, TOC i stężenia SLS odpowiednio o 83%, 44% i 98%.
Rocznik
Strony
108--113
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Chemiqua Company, ul. Skawińska 25/1, 31-066 Kraków, Poland
  • Silesian University of Technology, Institute of Water and Wastewater Engineering, ul. Konarskiego 18, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Water and Wastewater Engineering, ul. Konarskiego 18, 44-100 Gliwice, Poland
  • Chemiqua Company, ul. Skawińska 25/1, 31-066 Kraków, Poland
autor
  • University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice, Poland
autor
  • University of Silesia, Institute of Chemistry, ul. Szkolna 9, 40-006 Katowice, Poland
Bibliografia
  • 1. Sahunin C, Kaewboran J, Hunsom M. Treatment of textile dyeing wastewater by photo oxidation using UV/H2O2 /Fe2+ reagents. Science Asia 2006; 32: 181-186.
  • 2. Lee Y H, Matthews R D, Pavlostathis S G. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidationereduction conditions. Water Environment Research 2006; 78: 156-169.
  • 3. Riera-Torres M, Gutierrez-Bouzan C, Crespi M. Combination of coagulation/flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 2010; 252: 53-59.
  • 4. Hai F I, Yamamoto K, Fukushi K. Hybrid treatment systems for dye wastewater. Critical Reviews in Environmental Science and Technology 2007; 37: 315-377.
  • 5. Gupta V K, Suhas. Application of low-cost adsorbents for dye removal review. Journal of Environmental Management 2009; 90: 2313-2342.
  • 6. Ustun G E, Solmaz S K A, Birgul A. Regeneration of industrial district wastewater using a combination of Fenton process and ion exchange-A case study. Resources Conservation and Recycling 2007; 52: 425-440.
  • 7. Kim T H, Park C, Yang J, Kim S. Comparison of disperse and reactive dye removals by chemical coagulation and fenton oxidation. Journal of Hazardous Materials 2004; 112(12): 95-103.
  • 8. Foo K Y, Hameed B H. Decontamination of textile wastewater via TiO2/activated carbon composite materials. Advances in Colloid and Interface Science 2010; 159: 130-143.
  • 9. Anliker R. in Richardson M. (Ed.). Toxic hazard assessment of chemicals. The Royal Society of Chemistry 1986, London.
  • 10. Barredo-Damas S, Alcaina-Miranda M I, Iborra-Clar M I , Bes-Pià A, Mendoza J A, Iborra-Clar A. Study of the UF process as pretreatment of NF membranas for textile wastewater reuse. Desalination 2006; 200: 745-747.
  • 11. Fu Y, Viraraghavan T. Fungal decolorization of dye wastewaters: a review. Bioresource Technology 2001; 79: 251-262.
  • 12. Ciabatti I, Tognotti F, Lombardi L. Treatment and reuse of dyeing effluents by potassium ferrate. Desalination 2010; 250: 222-228.
  • 13. Merzouk B, Madani K, Sekki A. Using electrocoagulation-electroflotation technology to treat synthetic solution and textile wastewater, two case studies. Desalination 2010; 250: 573-577.
  • 14. Selcuk H, Meric S. Ozone pre-oxidation of a textile industry wastewater for acute toxicity removal. Global NEST Journal 2006; 8(2): 95-102.
  • 15. Kos L, Michalska K, Żyłła R, Perkowski J. Effect of acetic acid on pollutant decomposition in textile wastewater treated by the Fenton method. Environmental Protection Engineering 2012; 38(2): 29-39.
  • 16. Hassaan M A, El Nemr A. Advanced Oxidation Processes for Textile Wastewater Treatment. International Journal of Photochemistry and Photobiology 2017; 2(3): 85-96.
  • 17. Salwiczek S, Barbusiński K, Dymaczewski Z, Matyska Z, Żołnierczyk M. Preliminary studies on modified Fenton and UV/H2O2 processes for purification of wastewater from 2-ethylhexyl nitrate production. Przemysł Chemiczny 2016; 95(1): 118-120.
  • 18. El Haddad M, Regti A, Laamari M R, Mamouni M, Saffaj N. Use of Fenton reagent as advanced oxidative process for removing textile dyes from aqueous solutions. Journal of Materials and Environmental Science 2014; 5(3): 667-674.
  • 19. Barbusiński K, Fajkis S. Optimization of the Fenton Oxidation of Wastewater Generated by Rape Oil Soapstock Splitting. Environmental Progress & Sustainable Energy 2011; 30(4): 620-631.
  • 20. Verma A K, Bhunia P, Dash R R. Decolorization and COD Reduction Efficiency of Magnesium over Iron based Salt for the Treatment of Textile Wastewater Containing Diazo and Antraquinone Dyes. International Journal of Environmental, Chemical, Ecological, Geological ang Geophysical Engineering 2012; 6(6): 365-372.
  • 21. PN-EN ISO 10523:2012 Water Quality. Determination of pH.
  • 22. PN-ISO 7887:2012 Water Quality. Examination and determination of colour.
  • 23. PN-ISO 15705:2005 Water Quality. Determination of the Chemical Oxygen Demand Index. Small-scale. Sealed-tube Method.
  • 24. PN-EN 1484:1999 Water Analysis. Guidelines for the determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC).
  • 25. Kang Y W, Cho M J, Hwang K Y. Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Research 1999; 33: 1247-1251.
  • 26. BN-89/6191-04 Chemical reagents. Hydrogen peroxide about 30% (m/m), solution.
  • 27. PN-EN 903:1993 Water Quality. Determination of anionic surfactants by measurement of the methylene blue index MBAS.
  • 28. Kos L, Michalska K, Perkowski J. Textile Wastewater Treatment by the Fenton Method. Fibres & Textiles in Eastern Europe 2010; 4(81): 105-109.
  • 29. Eslami A, Moradi M, Ghanbari F, Mehdipour F. Decolorization and COD removal from real textile wastewater by chemical and electrochemical Fenton process: comparative study. Journal of Environmental Health Science and Engineering 2013; 11(31): 1-8.
  • 30. Taghavi K, Purkareim S, Pendashteh AR, Chaibakhsh N. Optimized Removal of Sodium Dodecylbenzenesulfonate by Fenton-like Oxidation Using Response Surface Methodology. Iranian Journal of Chemistry and Chemical Engineering 2016; 35(4): 113124.
  • 31. Torrades F, Garcia-Montano J. Using central composite experimental design to optimize the degradationof real dye wastewater by Fenton anfd photo-Fenton reactions. Dyes and Pigments 2014; 100: 184-189.
  • 32. Arslan-Alaton I, Tureli G, Olmez-Hanci T. Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry 2009; 202: 142–153.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72f96996-46eb-4c7e-9e81-e083bbd05edf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.