PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hall effect test bench for temperature dependence of carrier concentration

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Stanowisko do pomiarów efektu Hall’a do wyznaczania temperaturowych zależności koncentracji nośników
Języki publikacji
EN
Abstrakty
EN
This paper presents an integrated bench for Hall effect measurements consisting of a helium cryostat placed between the electromagnet poles with a field of 0.5 T and a control and measurement system, as well as control algorithm for different operating modes. The results of measurements of majority carrier concentration by van der Pauw method in the temperature range 165 K - 300 K for indium tin oxide (ITO).
PL
W artykule przedstawiono zintegrowane stanowisko do pomiaru efektu Hall’a składające się z helowego kriostatu umieszczonego między nabiegunnikami elektromagnesu o polu 0,5 T oraz systemu kontrolno-pomiarowego, a także algorytmu sterowania dla różnych modów pracy. Zaprezentowano wyniki pomiarów koncentracji nośników większościowych metodą van der Pauw’a w zakresie temperatur od 165 K do 300 K dla warstw tlenku indowo-cynowego (ITO).
Rocznik
Strony
231--234
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • AGH University of Science and Technology, Institute of Electronics, Al. Mickiewicza 30, Kraków, Poland
  • Hasler Rail, IBU On-Board Electronics, Podnikatelská 556, Praha, Czech Republic
  • The author is retired
  • AGH University of Science and Technology, Institute of Electronics, Al. Mickiewicza 30, Kraków
Bibliografia
  • [1] H. Gui et al., “Review of Power Electronics Components at Cryogenic Temperatures,” IEEE Trans Power Electron., vol. 35, no. 5, pp. 5144–5156, 2021, doi: 10.1109/tpel.2019.2944781.Review.
  • [2] J. Jankowski, S. El-Ahmar, and M. Oszwaldowski, “Hall sensors for extreme temperatures,” Sensors, vol. 11, no. 1, pp. 876–885, 2011, doi: 10.3390/s110100876.
  • [3] I. Tobehn-Steinhäuser, M. Reiche, M. Schmelz, R. Stolz, T. Fröhlich, and T. Ortlepp, “Carrier Mobility in Semiconductors at Very Low Temperatures,” Eng. Proc., vol. 6, pp. 1–5, 2021, doi: 10.3390/i3s2021dresden-10086.
  • [4] G. Wroblewski et al., “Graphene platelets as morphology tailoring additive in carbon nanotube transparent and flexible electrodes for heating applications,” J. Nanomater., vol. 2015, 2015, doi: 10.1155/2015/316315.
  • [5] E. H. Hall, “On a New Action of the Magnet on Electric Currents,” Am. J. Math., vol. 2, pp. 287–292, 1879.
  • [6] G. S. Leadstone, “The discovery of the Hall effect,” Phys. Educ., vol. 14, no. 6, pp. 374–379, 1979, doi: 10.1088/0031-9120/14/6/001.
  • [7] N. H. C. Techniques, “Product Information Provide Safe , Reliable Detection and Protection for Power Electronics,” no. 1, pp. 1–19.
  • [8] W. P. N. dos Reis, G. E. Couto, and O. Morandin Junior, “Direct current geared motor data: Voltage, current, and speed measured under different experimental conditions,” Data Br., vol. 40, p. 107802, 2022, doi: 10.1016/j.dib.2022.107802.
  • [9] R. Garmabdari, S. Shafie, W. Z. Wan Hassan, and A. Garmabdari, “Study on the effectiveness of dual complementary Hall-effect sensors in water flow measurement for reducing magnetic disturbance,” Flow Meas. Instrum., vol. 45, pp. 280–287, 2015, doi: 10.1016/j.flowmeasinst.2015.07.007.
  • [10] S. Paliwal and S. Yenuganti, “A Differential Hall Effect Based Pressure Sensor,” J. Electr. Eng. Technol., vol. 16, no. 2, pp. 1119–1129, 2021, doi: 10.1007/s42835-020-00647-8.
  • [11] M. Urbański, M. Nowicki, R. Szewczyk, and W. Winiarski, “Flowmeter Converter Based on Hall Effect Sensor,” Adv. Intell. Syst. Comput., vol. 352, pp. 265–276, 2015, doi: 10.1007/978-3-319-15835-8_29.
  • [12] S. D. T. Dewi, C. Panatarani, and I. M. Joni, “Design and development of DC high current sensor using Hall-Effect method,” AIP Conf. Proc., vol. 1712, no. February 2016, pp. 1–6, 2016, doi: 10.1063/1.4941871.
  • [13] C. Liu, J. G. Liu, and R. Kennel, “Accuracy Improvement ofRotational Speed Sensors by Novel Signal Processing Method,” J. Phys. Conf. Ser., vol. 1065, no. 7, pp. 0–4, 2018, doi: 10.1088/1742-6596/1065/7/072013.
  • [14] S. M. Hira et al., “Detection ofTarget ssDNAUsing aMicrofabricated Hall Magnetometer with Correlated Optical Readout,” J. Biomed. Biotechnol., pp. 1–10, 2012, doi: 10.1155/2012/492730.
  • [15] P. M. Nabeel, J. Joseph, and M. Sivaprakasam, “A Magnetic Plethysmograph Probe for Local Pulse Wave Velocity Measurement,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 5, pp. 1065–1076, 2017, doi: 10.1109/TBCAS.2017.2733622.
  • [16] D. E. Backman, B. L. LeSavage, and J. Y. Wong, “Versatile and inexpensive Hall-Effect force sensor for mechanical characterization of soft biological materials,” J. Biomech., vol. 51, pp. 118–122, 2017, doi: 10.1016/j.jbiomech.2016.11.065.
  • [17] H. Fan et al., “Detection techniques of biological and chemical Hall sensors,” RSC Adv., vol. 11, no. 13, pp. 7257–7270, 2021, doi: 10.1039/d0ra10027g.
  • [18] F. S. Oliveira, R. B. Cipriano, F. T. da Silva, E. C. Romão, and C. A. M. dos Santos, “Simple analytical method for determining electrical resistivity and sheet resistance using the van der Pauw procedure,” Sci. Rep., vol. 10, no. 1, pp. 1–8, 2020, doi: 10.1038/s41598-020-72097-1.
  • [19] N. A. Jayah, H. Yahaya, M. R. Mahmood, T. Terasako, K. Yasui, and A. M. Hashim, “High electron mobility and low carrier concentration of hydrothermally grown ZnO thin films on seeded a-plane sapphire at low temperature,” Nanoscale Res. Lett., vol. 10, no. 1, pp. 1–10, 2015, doi: 10.1186/s11671-014-0715-0.
  • [20] Y. J. Zeng et al., “Study on the Hall-effect and photoluminescence of N-doped p-type ZnO thin films,” Mater. Lett., vol. 61, pp. 41–44, 2007, doi: 10.1016/j.matlet.2006.04.001.
  • [21] A. Tsukazaki et al., “Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N,” Appl. Phys. Lett., vol. 81, pp. 235–237, 2002, doi: 10.1063/1.1491294.
  • [22] M. Sumiya et al., “Quantitative control and detection of heterovalent impurities in ZnO thin films grown by pulsed laserdeposition,” J. Appl. Phys., vol. 93, pp. 2562–2569, 2003, doi: 10.1063/1.1542938.
  • [23] H. Tampo et al., “High electron mobility Zn polar ZnMgO/ZnO heterostructures grown by molecular beam epitaxy,” J. Cryst. Growth, vol. 301–302, pp. 358–361, 2007, doi: 10.1016/j.jcrysgro.2006.11.169.
  • [24] S. Herodotou, R. E. Treharne, K. Durose, G. J. Tatlock, and R. J. Potter, “The effects of Zr doping on the optical, electrical and microstructural properties of thin ZnO films deposited by atomic layer deposition,” Materials (Basel)., vol. 8, pp. 7230–7240, 2015, doi: 10.3390/ma8105369.
  • [25] H. Mito et al., “High-Mobility Single-Crystalline WO 3 Epiaxial Films Grown on LSAT Substrates,” IMFEDK 2018 - 2018 Int. Meet. Futur. Electron Devices, Kansai, vol. 2018, pp. 3–4, 2018, doi: 10.1109/IMFEDK.2018.8581977.
  • [26] O. Tuna, Y. Selamet, G. Aygun, and L. Ozyuzer, “High quality ITO thin films grown by dc and RF sputtering without oxygen,” J. Phys. D. Appl. Phys., vol. 43, no. 5, 2010, doi: 10.1088/0022-3727/43/5/055402.
  • [27] L. Wang, J. Wen, C. Yang, and B. Xiong, “Potential of ITO thin film for electrical probe memory applications,” Sci. Technol. Adv. Mater., vol. 19, no. 1, pp. 791–801, 2018, doi: 10.1080/14686996.2018.1534072.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72f505f1-591e-4516-858c-b00d49506fd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.