PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD simulations of blood flow through abdominal part of aorta

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this research was to show superiority of using real geometries in simulations of blood fl ow through cardiovascular system. Our model compared blood fl ow through an abdominal part of aorta reconstructed with a use of data from an AngioTK research with the 3DDoctor software to geometries with the same diameters at inlet and outlet as mention before but created only with the Gambit 2.2.30 software without data from AngioTK. Blood fl ow simulations were prepared with the Fluent 6.2.16 software. Calculations of fl ow through a real geometry allows to obtain realistic results of values connected with process of blood fl ow. Results showed that calculations blood fl ow through a virtual geometry lasted two times longer than for a real geometry. Mesh for a real geometry consist about 600.000 elements and for a virtual geometry about 900.000 elements. Wall shear stress and blood velocity was higher for a real geometry and closer to that in human organism. It was shown that calculating a virtual geometry vessel was to big simplifi cation when investigating blood fl ow through a vessel. Application of mathematical models based on real geometries gives more realistic results than artifi cial geometries. Virtual models have lots of simplifi cations which results are far away from expectations. Simplifi cations depend on the model that is used.
Rocznik
Strony
34--39
Opis fizyczny
Bibliogr. 9 poz., tab., wykr., rys.
Twórcy
autor
  • Faculty of Process and Enviromental Engineering, Technical University of Lodz, Wolczanska 213 90-924 Lodz, Poland
autor
  • Chair of Experimental and Clinical Physiology, Department of Cardiovascular Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
Bibliografia
  • [1] Kulkarin, M.S., et al. “Finite element analysis of mechanical behavior of SMP hip joint implanted in femur bone”. Trends Biomater. Artif. Organs, June 2009: 10–15.
  • [2] Berry, J., A. Santamarina, and W. Routh. Annals of Biomedical Engineering 2000: 386–398.
  • [3] Marschner, U., B. Jettkant, and D. Ruwisch. “FEM simulation and wireless measurement of hip prosthesis vibration for loosening detection”. European Symposium Technical Aids for Rehabilitation — TAR, 2007, January 25–26.
  • [4] Causin, P., J.F. Gerbeau, and F. Nobile. “Added-mass eff ect in the design of partitioned algorithms for fl uidstructure problems”. Computer Methods in Applied Mechanics and Engineering 2005: 4506–4527.
  • [5] Lorenzini, G., and E. Casalena. “CFD analysis of pulsatile blood fl ow in an atherosclerotic human artery with eccentric plaques”. Journal of Biomechanics 2008: 1862--1870.
  • [6] Sienz, J., et al. “Computational modeling of 3D objects by Rusing fitting techniques and subsequent mesh generation”. Computers and Structures 2000: 397--413
  • [7] Perktold, K., M. Resch, and H. Florian. “Pulsatile non-Newtonian fl ow characterics in a three-dimensional human carotid bifurcation model”. Journal of Biomechanical Engineering 1991: 464–475.
  • [8] Bębenek, B. Przepływy w układzie krwionośnym. Kraków Politechnika Krakowska, 1999 (in Polish).
  • [9] Shipkowitz, T., et al. “Numerical study on the eff ect of secondary fl ow in the human aorta on local shear stresses in abdominal aortic branches”. Journal of Biomechanics 2000: 717–728.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72f30d60-db13-4144-89c0-dcedf14599ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.