PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the relative density based on flat dilatometer test

Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Overseeing the relative density of soils in all types of earth structures during both construction and operation is crucial to ensure that these structures attain the necessary density and strength. Especially in linear structures that extend over significant lengths, geotechnical investigations should include planning tests that allow for determining the maximum number of geotechnical parameters, such as cone penetration tests (CPTU) or Marchetti dilatometer tests (DMT). The article presents the in situ tests aimed at assessing the relative density of sandy soils. Empirical formulas available in the literature for determining the relative density Dr from DMT gave inconsistent results compared to those obtained from dynamic soundings, especially in the near-surface zone, where high KD readings significantly overestimate relative density values. Assuming the results of DPL probe tests as reference values, a formula for the compaction index based on DMT soundings has been proposed. In contrast to the formulas commonly used in the literature, the proposed formula for the relative density depends not only on the horizontal stress index KD, but also on the dilatometer modulus ED.
Słowa kluczowe
Wydawca
Rocznik
Strony
259--268
Opis fizyczny
Bibliogr. 29 poz., rys., tab
Twórcy
autor
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW Warsaw, Poland
autor
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW Warsaw, Poland
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW Warsaw, Poland
Bibliografia
  • [1] Borowczyk, M., & Frankowski, Z. B. (1981). Dynamic and static sounding results interpretation. Soil Mechanics and Foundation Engineering. Proc. 10th International Conference, Stockholm, June 1981. Vol. 2, (A.A. Balkema).
  • [2] EN1997-2:2007. Eurocode 7. Geotechnical design - Part 2: Ground investigation and testing. CEN, Brussels.
  • [3] Gruchot, A. (2019). Assessment of soil compaction and shear strength of the side dam of the Maziarnia water reservoir. Acta Scientiarum Polonorum Formatio Circumiectus, 18(3), 133–147. https://doi.org/10.15576/asp.fc/2019.18.3.133
  • [4] Hawrysz, M., & Stróżyk, J. (2015). The controversial interpretation of dynamic probing results in engineering practice. Inżynieria Morska i Geotechnika, 3, 203–207. (in Polish)
  • [5] Jamiolkowski, M., Leroueil, S., & lo Presti, D.C.F. (1991). Design parameters from theory to practice. Proceedings of the International Conference on Geotechnical Engineering for Coastal Development, Yokohama, Japan.
  • [6] Jamiolkowski, M., lo Presti, D. C. F., & Manassero, M. (2003). Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT. https://doi.org/10.1061/40659(2003)7
  • [7] Jamiolkowski, M., lo Presti, D.C.F., & Manassero, M. (2001). Evaluation of relative density and shear strength of sands from cone penetration test (CPT) and flat dilatometer test (DMT). ASCE Geotechnical Special Publication No. 119, 201–238.
  • [8] Koda, E., Tkaczyk, A., Lech, M., & Osiński, P. (2017). Application of Electrical Resistivity Data Sets for the Evaluation of the Pollution Concentration Level within Landfill Subsoil. Applied Sciences, 7(3):262, https://doi.org/10.3390/app7030262
  • [9] Larsson, R. (1989). The dilatometer test for assessing soil layer sequences and properties in the ground. Swedish Geotechnical Institute, Linköping, Information No. 10. (in Swedish)
  • [10] Lech, M., Skutnik, Z., Bajda, M., & Markowska-Lech, K. (2020). Applications of Electrical Resistivity Surveys in Solving Selected Geotechnical and Environmental Problems. Applied Sciences. 2020; 10(7):2263. https://doi.org/10.3390/app10072263
  • [11] Marchetti, S. (1980). In Situ Tests by Flat Dilatometer. J. Geotech. Geoenviron. Eng, 106, 299–321.
  • [12] Marchetti, S. (1992). The Flat Dilatometer Test. U.S. Department of Transportation Federal Highway Administration Publication No FHWA-SA-91-044.
  • [13] Marchetti, S., & Monaco, P. a. V. (2018). Recent improvements in the use, interpretation, and applications of DMT and SDMT in practice. Geotechnical Testing Journal, 41(5) https://doi.org/10.1520/gtj2017038
  • [14] Mayne, P. W., Christopher, B. R., & DeJong, J. (2002). Subsurface Investigations — Geotechnical Site Characterization Reference Manual. U.S. Department of Transportation Federal Highway Administration NHI Course No. 132031, 132031.
  • [15] Meardi, G. (1971). Discussion: The Correlation of Cone Size in the Dynamic Cone Penetration Test with the Standard Penetration Test. Geotechnique, 21, 184–190.
  • [16] Młynarek, Z. (2013). Session report: Direct push-in in situ test. Geotechnical and Geophysical Site Characterization 4 - Proceedings of the 4th International Conference on Site Characterization 4, ISC-4, 1.
  • [17] Młynarek, Z., Wierzbicki, J., & Wołyński W. (2018). Use of functional cluster analysis of CPTU data for assessment of a subsoil rigidity. Studia Geotechnica et Mechanica, 40(2): 117–124. https://doi.org/10.2478/sgem-2018-0017
  • [18] Młynarek, Z., Wierzbicki, J., & Lunne, T. (2021). Usefulness of the CPTU method in evaluating shear modulus G0 changes in the subsoil. Studia Geotechnica et Mechanica, 43(3) 195–205. https://doi.org/10.2478/sgem-2021-0008
  • [19] Nepelski, K. (2020). Interpretation of CPT and SDMT tests for Lublin loess soils exemplified by Cyprysowa research site. Budownictwo i Architektura, 18(3) 063–072. https://doi.org/10.35784/bud-arch.890.
  • [20] Pinheiro, C., Molina-Gómez, F., Rios, S., Viana da Fonseca, A., & Miranda, T. (2018). Correlations between Dynamic Penetrometer Light and Cone Penetration Tests in Intermediate Soils: a Statistical Comparison. XIX Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica Geotecnia e Desenvolvimento Urbano COBRAMSEG 2018, Brasil, 1–9.
  • [21] PN-B-04452:2002. Geotechnics. In situ investigations. Polski Komitet Normalizacyjny, Warsaw. (in Polish).
  • [22] Rabarijoely S. (2018). A New Approach to the Determination of Mineral and Organic Soil Types Based on Dilatometer Tests (DMT). Applied Sciences 8(11):2249. https://doi.org/10.3390/app8112249
  • [23] Rabarijoely, S., Lech, M., & Bajda, M. (2021). Determination of Relative Density and Degree of Saturation in Mineral Soils Based on In Situ Tests. Materials (Basel, Switzerland), 14(22), 6963. https://doi.org/10.3390/ma14226963
  • [24] Reynolds, J.M. (2011). An introduction to applied and environmental geophysics. John Wiley and Sons Ltd. New 437 York.
  • [25] Tanaka, H., & Tanaka, M. (1998). Characterization of sandy soils using CPT and DMT. Soils and Foundations, 38(3). https://doi.org/10.3208/sandf.38.3_55
  • [26] Tarnawski M. (2010). The need for verification of the interpretation of dynamic tests. Inżynieria Morska i Geotechnika, 31(3), 441–443. (in Polish)
  • [27] Totani, G., Marchetti, S., Monaco, P., & Calabrese, M. (2001). Use of the Flat Dilatometer Test (DMT) in geotechnical design. Intnl. Conf. On In situ Measurement of Soil Properties, Bali, Indonesia, 1–6.
  • [28] Ura, M., & Tarnawski, M. (2014). Interpretation of relative density of non-cohesive soils on the grounds of static and dynamic penetrometer results. Przegląd geologiczny, 62(10/2), 715–720 (in Polish).
  • [29] Virsis, E., Paeglitis, A., & Jateikienė, L. (2023). Analysis of Physical and Mechanical Soil Properties Determined Using Interpretations of Dilatometer Test (DMT) and Cone Penetration Test (CPT) Methods. The Baltic Journal of Road and Bridge Engineering 18(2) https://doi.org/10.7250/bjrbe.2023-18.605
Identyfikator YADDA
bwmeta1.element.baztech-72ee2375-3462-446c-a3db-97d4d8feb28f