PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and machinability assessment in turning Al/SiCp-metal matrix composite with multilayer coated carbide insert using Taguchi and statistical techniques

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the development of Al/SiCp (10% weight) metal matrix composite through a conventional casting process and studied its machinability characteristics in turning using multilayer TiN coated carbide insert under dry environment based on Taguchi's L9 orthogonal array. Abrasion is found to be the dominant wear mechanism from the experimental study. Continuous fragmented saw tooth type of chip obtained during machining of Al/SiCp-MMC under dry environment. The colour of chip changes from metallic to partial blue and built-up-edge formation is noticed at extreme parametric conditions. Cutting speed is observed to be the most significant variable affecting the flank wear. Feed is found to be the most significant parameter for surface roughness. The regression models are highly significant because of higher R2 value. The experimental and predicted values are very close to each other. Using grey relational analysis, the optimal parametric combination for multi-responses is found to be v3-f1-d3 and is greatly improved and noticed to be efficient while machining Al/SiCp-MMC.
Rocznik
Strony
27--35
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering, KIIT University, Bhubaneswar 24, Odisha, India
autor
  • School of Mechanical Engineering, KIIT University, Bhubaneswar 24, Odisha, India
autor
  • Department of Mechanical Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004, India
Bibliografia
  • [1] J.F. Foltz, C.M. Blackman, Metal matrix composites, Advanced Materials and Processes 154 (1997) 19–24.
  • [2] N.P. Hung, K.J. Ng, K.W. Low, Review on conventional machining of metal matrix composites, Engineering Systems Design and Analysis 75 (3) (1996) 75–80.
  • [3] S. Ramrattan, F. Sitkins, M. Nallakatala, Optimization of the casting and machining processes for a metal-matrix composite, in: Proceedings of Canadian Section Mechanical Engineering Symposium, McMaster University, 1996, pp. 624–629.
  • [4] K.H. Parka, P.Y. Kwon, Flank wear of multi-layer coated tool, Wear 270 (11–12) (2011) 771–780.
  • [5] M.M. Schwartz, Composite Materials: Processing, Fabrication, and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1997.
  • [6] L.A. Looney, J.M. Monaghan, P. O’Reilly, D.M.R. Taplin, The turning of an Al/SiC metal-matrix composite, Journal of Materials Processing Technology 33 (4) (1992) 453–468.
  • [7] K. Weinert, D. Biermann, Turning of fiber and particle reinforced aluminium, in: Proceedings of the International Conference on Machining of Advanced Materials, Gaithersburg, MD, 1993, pp. 437–453.
  • [8] C. Fetecau, F. Stan, Study of cutting force and surface roughness in the turning of polytetrafluoroethylene composites with a polycrystalline diamond tool, Measurement 45 (6) (2012) 1367–1379.
  • [9] T. Ozben, E. Kilickap, O.C. Akr, Investigation of mechanical and machinability properties of SiC particle reinforced Al–MMC, Journal of Materials Processing Technology 198 (1–3) (2008) 220–225.
  • [10] A.C. Basheer, U.A. Dabade, S.S. Joshi, V.V. Bhanuprasad, V.M. Gadre, Modeling of surface roughness in precision machining of metal matrix composites using ANN, Journal of Materials Processing Technology 197 (1–3) (2008) 439–444.
  • [11] A. Manna, B. Bhattacharayya, A study on machinability of Al/SiC-MMC, Journal of Materials Processing Technology 140 (1–3) (2003) 711–716.
  • [12] N.P. Hung, N.L. Loh, Z.M. Xu, Cumulative tool wear in machining metal matrix composites part II: machinability, Journal of Materials Processing Technology 58 (1) (1996) 114–120.
  • [13] X. Ding, W.Y.H. Liew, X.D. Liu, Evaluation of the machining performance of the MMC with PCBN and PCD tools, Wear 259 (7–12) (2005) 1225–1234.
  • [14] M. EI-Gallab, M. Sklad, Machining of Al/SiC particulate metal matrix composites part II: workpiece surface integrity, Journal of Materials Processing Technology 83 (1–3) (1998) 277–285.
  • [15] L. Luliano, L. Setineri, A. Gatto, High-speed turning experiments on metal matrix composites, Composites Part A 29 (12) (1998) 1501–1509.
  • [16] M.A.E.L. Baradie, Manufacturing aspects of metal matrix composites, Journal of Materials Processing Technology 24 (1990) 261–272.
  • [17] M. EI-Gallab, M. Sklad, Machining of Al/SiC particulate metal matrix composites part III: comprehensive tool wear models, Journal of Materials Processing Technology 101 (1–3) (2000) 10–20.
  • [18] M. EI-Gallab, M. Sklad, Machining of Al:SiC particulate metal–matrix composites part I: tool performance, Journal of Materials Processing Technology 83 (1–3) (1998) 151–158.
  • [19] R. Jeyapaul, S. Sivasankar, Optimization and modeling of turning process for aluminium-silicon carbide composite using artificial neural network models, in: Proceedings of the IEEE IEEM, 2011.
  • [20] S. Kannan, H.A. Kishawy, Surface characteristics of machined aluminium metal matrix composites, International Journal of Machine Tools and Manufacture 46 (15) (2006) 2017–2025.
  • [21] R. Teti, Machining of composites materials, Annals of the CIRP 51 (2) (2002) 611–634.
  • [22] A. Parmanik, L.C. Zhang, J.A. Arsecularatne, Prediction of cutting forces in machining of metal matrix composites, International Journal of Machine Tools and Manufacture 46 (14) (2006) 1795–1803.
  • [23] N. Muthukrishnan, M. Murugan, K. Prahalda Rao, Machinability issues in turning of Al-SiC (10p) metal matrix composites, International Journal of Advanced Manufacturing Technology 39 (3–4) (2008) 211–218.
  • [24] R. Venkatesh, A.M. Hariharan, N. Muthukrishnan, Machinability studies of Al/SiC/ (20p) MMC by using PCD insert (1300 grade), in: Proceedings of the World Congress on Engineering, vol. II, July 1–3 2009, London, UK.
  • [25] A. Hascahk, U. Caydas, Optimization of turning parameters for surface roughness and tool life based on the Taguchi method, International Journal of Advanced Manufacturing Technology 38 (9–10) (2008) 896–903.
  • [26] R. Arokiadass, K. Palaniradja, N. Alagumoorthi, Predictive modeling of surface roughness in end milling of Al/SiCp metal matrix composite, Archives of Applied Science Research 3 (2) (2011) 228–236.
  • [27] C.J.E. Andrewes, H.-Y. Feng, W.M. Lau, Machining of an aluminium/SiC composite using diamond inserts, Journal of Materials Processing Technology 102 (1–3) (2000) 25–29.
  • [28] N. Muthukrishnan, J.P. Davim, Optimization of machining parameters of Al/SiC-MMC with ANOVA and ANN analysis, Journal of Materials Processing Technology 209 (1) (2009) 225–232.
  • [29] R. Karthikeyan, R. Adalarasan, B.C. Pai, Optimization of machining characteristics for Al/SiCp composites using ANN/GA, Journal of Materials Science and Technology 18 (1) (2002) 47–50.
  • [30] U.A. Dabade, S.S. Joshi, Analysis of chip formation mechanism in machining of Al/SiCp metal matrix composites, Journal of Materials Processing Technology 209 (10) (2009) 4704–4710.
  • [31] R. Bejjani, B. Shi, H. Attia, M. Balazinski, Laser assisted turning of titanium metal matrix composite, CIRP Annals Manufacturing technology 60 (1) (2011) 61–64.
  • [32] G. Taguchi, Introduction to Quality Engineering, Asian Productivity Organization (APO), Tokyo, Japan, 1990.
  • [33] S. Neseli, S. Yaldz, E. Turkes, Optimization of tool geometry parameters for turning operations based on the response surface methodology, Measurement 44 (3) (2011) 580–587.
  • [34] C.L. Lin, Use of the Taguchi method and grey relational analysis to optimize turning operation swith multiple performance characteristics, Materials and Manufacturing processes 19 (2) (2004) 209–220.
  • [35] A.K. Sahoo, B. Sahoo, Mathematical modeling and multi-response optimization using response surface methodology and grey based Taguchi method: an experimental investigation, International Journal of Experimental Design and Process Optimization 2 (3) (2011) 221–242.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72ecc3c9-315f-4861-a17f-40d1bd713356
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.