PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical elastoplastic analysis of trabeculae in lumbar vertebral body

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
PL EN
Abstrakty
EN
This paper presents a numerical modelling of lumbar vertebrae L1 by employing the finite element method. The three-dimensional model of vertebral body is derived by processing CT data and DICOM format files. The model includes cortical shell, trabecular bone and posterior elements. The formation of trabecular structure was performed by script-controlled ellipsoidal cut-outs. In order to define the nonlinear relationship between the stress and the strain, the Ramberg-Osgood equation was applied. Therefore, the von Mises stress was assumed to characterise the stressed state of bone tissue due to 1 and 7 MPa compression load. According to specific difficulties for “in vitro” and “in vivo” investigation methods, this “in silico” technique may provide new insight for further understanding of the trabecular bone behaviour in terms of plastic deformation.
Rocznik
Strony
83--88
Opis fizyczny
Bibliogr. 14 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Mechanics, Faculty of Mechanics, Vilnius Gediminas Technical University J. Basanaviˇciaus str. 28, 03224 Vilnius, Lithuania
autor
  • Faculty of Medicine, Vilnius University M. K. Ciurlionio str. 21, Vilnius 03101, Lithuania
autor
  • Department of Biomechanics, Faculty of Mechanics Vilnius Gediminas Technical University J. Basanaviˇciaus str. 28, 03224 Vilnius, Lithuania
autor
  • Institute of Mechanics, Faculty of Mechanics, Vilnius Gediminas Technical University J. Basanaviˇciaus str. 28, 03224 Vilnius, Lithuania e-mail: algirdas.maknickas@vgtu.lt
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology Nowowiejska 24, 00-665 Warsaw, Poland
  • Faculty of Medicine, Vilnius University M. K. Ciurlionio str. 21, Vilnius 03101, Lithuania
  • Institute of Mechanics, Faculty of Mechanics, Vilnius Gediminas Technical University J. Basanaviˇciaus str. 28, 03224 Vilnius, Lithuania
Bibliografia
  • 1. López E., Ibarz E., Herrera A., Mateo J., Lobo-Escolar A., Pu´ertolas S., Gracia L., Probability of osteoporotic vertebral fractures assessment based on DXA measurements and finite element simulation, Advances in Bioscience and Biotechnology, 5(06): 527–545, 2014, doi: 10.4236/abb.2014.56063.
  • 2. Mazlan M.H., Todo M., Takano H., Yonezawa I., Finite element analysis of osteoporotic vertebrae with first lumbar (L1) vertebral compression fracture, International Journal of Applied Physics and Mathematics, 4(4): 267–274, 2014, doi: 10.7763/IJAPM.2014.V4.297.
  • 3. Łodygowski T., Kąkol W., Wierszycki M., Ogurkowska B.M., Three-dimensional nonlinear finite element model of the human lumbar spine segment, Acta of Bioengineering and Biomechanics, 7: 17–28, 2005.
  • 4. Su J., Cao L., Li Z., Yu B., Zhang C., Li M., Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance, Chinese Journal of Traumatology, 12(3): 153–156, 2009, doi: 10.3760/cma.j.issn.1008-1275.2009.03.006.
  • 5. Jones A.C., Wilcox R.K., Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis, Medical Engineering and Physics, 30(10): 1287–1304, 2008, doi: 10.1016/j.medengphy.2008.09.006.
  • 6. Crawford R.P., Cann C.E., Keaveny T.M., Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography, Bone, 33(4): 744–750, 2003, doi: 10.1016/S8756-3282(03)00210-2.
  • 7. Maquer G., Schwiedrzik J., Huber G., Morlock M.M., Zysset P.K., Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion, Journal of Mechanical Behavior of Biomedical Materials, 42: 54–66, 2015, doi: 10.1016/j.jmbbm.2014.10.016.
  • 8. Provatidis C., Vossou C., Koukoulis I., Balanika A., Baltas C., Lyritis G., A pilot finite element study of an osteoporotic L1-vertebra compared to one with normal T-score, Computer Methods in Biomechanics and Biomedical Engineering, 13(2): 185– 195, 2010, doi: 10.1080/10255840903099703.
  • 9. McDonald K., Little J., Pearcy M., Adam C., Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics, Medical Engineering & Physics, 32(6): 653–661, 2010, doi: 10.1016/j.medengphy.2010.04.006.
  • 10. Garo A., Arnoux P.J., Wagnac E., Aubin C.E., Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure, Medical & Biological Engineering & Computing, 49(12): 1371–1379, 2011, doi: 10.1007/s11517-011-0826-z.
  • 11. El-Rich M., Arnoux P.J., Wagnac E., Brunet C., Aubin C.E., Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions, Journal of Biomechanics, 42(9): 1252–1262, 2009, doi: 10.1016/j.jbiomech. 2009.03.036.
  • 12. Mao-Hong Y., Advances in strength theories for materials under complex stress state in the 20th Century, Applied Mechanics Reviews, 55(3): 169–218, 2002, doi: 10.1115/1.1472455.
  • 13. Timothy H.K., Brandeau J.F., Mathematical modeling of the stress strain-strain rate behavior of bone using the Ramberg-Osgood equation, Journal of Biomechanics, 16(6): 445–450, 1983, doi: 10.1016/0021-9290(83)90076-3.
  • 14. Kim Y.H., Wu M., Kim K., Stress analysis of osteoporotic lumbar vertebra using finite element model with micro-scaled beam-shell trabecular-cortical structure, Journal of Applied Mathematics, 2013: 115–118, 2013, doi: 10.1155/2013/285165.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72e5669d-66d5-4f99-b3b4-5403e4f48628
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.