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Abstract. In this paper, we study a series of fourth-order strain wave equations involving dis-
sipative structure, which appears in elasto-plastic-microstructure models. By some differential
inequalities, we derive the finite time blow up results and the estimates of the upper bound
blowup time with arbitrary positive initial energy. We also discuss the influence mechanism
of the linear weak damping and strong damping on blowup time, respectively.
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1. INTRODUCTION

In recent years, the research on high-order evolution problem including fourth-order
partial differential equations has become more and more active. Now let us review
some of the current results. Ghoul et al. [5] studied a semilinear parabolic equation in
the whole space RN with the high-order operator (−∆)m, where m denotes an odd
integer. In [3] for studying the higher-order Cahn–Hilliard and Allen–Cahn models, the
authors obtained the existence of global attractor and gave numerical simulations to
explore the effects of higher-order terms. Then for the case of fourth-order hyperbolic
equation with strongly damping term was considered by Yang et al. [18], in which
the asymptotic behavior, global existence and finite time blowup of weak solutions
were obtained by using the variational method based on the concepts of invariant
sets. Subsequently, the non-existence of global solution to the fourth-order hyperbolic
equation with nonlinear strain term

vtt + ∆2v − α∆v +
n∑

i

∂

∂xi
σi(vxi) = f(v), α ≥ 0, x ∈ Ω ⊂ Rn
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was studied by Lin et al. [13] in the critical and super-critical initial energy cases. Then,
it is worth pointing that much interest was paid to study this type of damped wave
equations with strain term [4,11,14,16,17,20], which are widely used in the description
of the longitudinal motion of elasto-plastic bar in the mathematical investigation of
the elasto-plastic microstructure model [1].

The classical fourth order hyperbolic equation with dissipation and strain terms
has the following form

vtt + ∆2v +
n∑

i

∂

∂xi
σi(vxi) +mvt = 0, m ≥ 0, x ∈ Ω ⊂ Rn, (1.1)

which was considered in [14] as the model used to describe the elastoplastic bar
with elasto-plastic-microstructure that causes the dissipative effects. By introducing
a family of potential wells, they obtained the threshold conditions of global existence
and finite time blowup of solutions in the sub-critical and the critical initial energy
cases E(0) ≤ d (d denotes the mountain pass level), respectively. According to the
same method as above, there has been some representative works [9,12,19] recently
to discover the control mechanism of the initial data on the dynamical behavior of
the solutions. For the more generalized strain function σi(vxi

) compared to the works
in [14], Han et al. [7] proved global existence, energy decay estimate and finite time
blowup for the IBVP (i.e., initial boundary value problem) of (1.1). In particular,
the authors in [7] gave some sufficient conditions for ensuring the finite time blowup
solution to (1.1) for the arbitrary positive initial energy E(0) > 0.

Later, by taking advantage of potential well method, Wang et al. [16] turned to
consider the following fourth-order wave equation with weak damping and nonlinear
strain term

vtt + ∆2v − α∆v +
n∑

i=1

∂

∂xi
σi(vxi) + vt = f(v), x ∈ Ω ⊂ Rn (1.2)

for α ≥ 0, which has one more external force source f(u) than Equation (1.1). The
authors in [16] obtained the global solution and its exponential decay for E(0) < d
and pushed the finite time blowup result to the arbitrary initial energy.

Then Xu et al. [17] studied the dissipative model with strong damping

vtt + ∆2v − ∆v +
n∑

i=1

∂

∂xi
σi(vxi

) − ∆vt = f(v), x ∈ Ω, t > 0. (1.3)

In the sub-critical initial energy case, i.e., E(0) < d, they obtained the sharp
condition of global and non-global solutions for (1.3) with f(v) = 0 and
Ω = (0, 1). Later, the arbitrarily positive initial energy blowup solution for (1.3)
was considered in [20] by using the concavity method.

Recently, Lian et al. [11] studied the following fourth-order nonlinear wave equations
with nonlinear strain term, strong damping and nonlinear weak damping

vtt + ∆2v − ∆v +
n∑

i=1

∂

∂xi
σi(vxi) − ∆vt + |vt|r−1vt = f(v), x ∈ Ω ⊂ Rn. (1.4)
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They firstly proved the local existence of weak solution by fixed point theory. Then
within the framework of variational method, the global existence and non-existence,
asymptotic behavior of solutions for (1.4) were derived with r ≥ 1 and E(0) ≤ d.
Ultimately, the arbitrarily positive initial energy blowup solution was also discussed
to restrict r = 1.

As we can see from above works, the potential well theory is an effective tool to
show the existence and non-existence of solution, which works for both the sub-critical
initial energy case E(0) < d and the critical initial energy case E(0) = d. However, for
the sup-critical initial energy E(0) > d, only some sufficient conditions for the finite
time blowup solution are currently available as shown in [7, 11] for E(0) > 0. Even so,
this is the best way so far to investigate blowup results for the sup-critical initial energy
case which included in the arbitrarily positive initial energy case. No exception, in this
paper we discuss the unreached conclusions for the IBVP of (1.1)–(1.4), respectively,
at arbitrarily positive initial energy level. In summary for the above fourth-order
strain wave equations with damping terms, it can be seen that although the finite
time blowup of solutions corresponding to Equations (1.1)–(1.4) were obtained in the
case of E(0) > 0, there has been no estimates of the blowup time. So at what time t∗
blow-up occurs? Motivated by the previous works, we aim to estimate the upper bounds
for t∗ to Equations (1.1)–(1.4) with E(0) > 0, respectively. Furthermore, we reveal
the relationship between the finite time blowup and damping terms by comparing
the different blowup time.

The rest of this paper is organized as follows. In Section 2, we state some notations
and preliminary lemmas. In Section 3, under some constraints on the initial data,
we give an explicit expression of upper bound blowup time estimate for the above
four classes of dissipative models with E(0) > 0. In addition, by comparing the upper
bounds of blowup time corresponding to different strain wave equations, we clearly
express the fact that the dissipative structure in the equation is beneficial to the global
existence of the solution, but not to the blowup.

2. PRELIMINARY KNOWLEDGE

For simplicity, the norm of v in L2(Ω) and Lp(Ω) are denoted by ∥v∥ and ∥v∥p,
respectively. The H1

0 (Ω) norm is defined by

∥v∥H1
0 (Ω) := ∥∇v∥2 + ∥v∥2,

which equivalents to ∥∇v∥ in Ω ⊂ RN . Moreover, we use ⟨·, ·⟩ to denote the dual
pairing between H and H−2(Ω), where

H =
{
H2

0 (Ω), when v = ∂v
∂ν = 0 on ∂Ω,

H2(Ω) ∩H1
0 (Ω), when v = ∆v = 0 on ∂Ω,

where ν denotes the unit outer normal field. As we all know, ∥v∥H is equivalent
to ∥∆v∥ for any v ∈ H.
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Throughout the paper, we equip the initial data and Dirichlet boundary conditions
of (1.1)–(1.4) in the same form

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω, (2.1)

v = ∂v

∂ν
= 0, or v = ∆v = 0, x ∈ ∂Ω, t > 0. (2.2)

In addition, f(v) and σi(v) (1 ≤ i ≤ n) satisfy

(H1)





(i) f(v) ∈ C1 and f(0) = f ′(0) = 0,
(ii) f(v) is a monotone for − ∞ < v < ∞ and is convex when v > 0,

concave when v < 0,
(iii) (p1 + 1)F (v) ≤ vf(v) and F (v) =

∫ v
0 f(τ)dτ, 1 < p1 < ∞ if n ≤ 4,

1 < p1 <
n+4
n−4 if n ≥ 5.

(H2)





(i) σi(v) ∈ C1 andσi(0) = σ′
i(0) = 0,

(ii) σi(v) is a monotone for − ∞ < v < ∞ and is convex when v > 0,
concave when v < 0,

(iii) (p2 + 1)Gi(v) ≤ vσi(v) and Gi(v) =
∫ v

0 σi(τ)dτ, 1 < p2 < ∞ if n ≤ 2,
1 < p2 <

n+2
n−2 if n ≥ 3.

Clearly, we see that when σi(vxi
) = |vxi

|p−2vxi
, it corresponds to the differential

operator

∆pv =
n∑

i=1

∂

∂xi

(∣∣∣∣
∂v

∂xi

∣∣∣∣
p−2

∂v

∂xi

)
,

for the recent developments in p-Laplacian can be found in [2, 6, 15].
Next we introduce a second-order differential inequality established in [8] to deal

with the upper bound of blowup time.
Lemma 2.1 ([8]). Suppose non-negative function H(t) ∈ C2([0, T ]), satisfying

H(t)H ′′(t) − ξ(H ′(t))2 + γH ′(t)H(t) + βH(t) ≥ 0, (2.3)

where β ≥ 0, γ ≥ 0, ξ > 1 and H(0) > 0,

H ′(0) > γ

ξ − 1H(0) (2.4)

and
(
H ′(0) − γ

ξ − 1H(0)
)2

>
2β

2ξ − 1H(0). (2.5)

Then there is a T ∗ > 0 satisfying

lim
t→T∗

supH(t) = +∞,
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here

T ∗ ≤ H1−ξ(0)
A

(2.6)

and

A2 = (ξ − 1)2H−2ξ(0)
((

H ′(0) − γ

ξ − 1H(0)
)2

− 2β
2ξ − 1H(0)

)
. (2.7)

3. FINITE TIME BLOWUP FOR THE FOURTH-ORDER WAVE EQUATIONS
WITH STRAIN AND DAMPING TERMS
AT ARBITRARY POSITIVE INITIAL ENERGY LEVEL

With the appearance of damping terms, the energy structure will change from energy
conservation to energy non-conservation, i.e., energy is decaying. At this point, the
impact of the energy decaying on blowup is negative. In the following, we shall focus
on the blowup dynamics of four classes damped wave equations with strain source,
and explore the influence mechanism of the damping terms vt and ∆vt on the blowup
time.

3.1. BLOWUP PHENOMENA FOR THE IBVP OF (1.1)
WITH ARBITRARY POSITIVE INITIAL ENERGY

Firstly, for the IBVP of (1.1), we define the energy functional

E1.1(t) := 1
2∥vt∥2 + 1

2∥∆v∥2 −
n∑

i=1

∫

Ω

Gi(vxi)dx.

Based on Lemma 2.1, we obtain the following main result of this subsection.
Theorem 3.1. Let v0 ∈ H, v1 ∈ L2(Ω) and σi satisfy (H2). Assume that

κ := 2(v0, v1) − 4m
p2 − 1∥v0∥2 > 0 (3.1)

and

κ2 > 8E1.1(0)∥v0∥2 > 0, (3.2)

where p2 > 1 is same as that in (H2). Then there exists a time T1.1 such that the IBVP
of (1.1) admits a blowup solution satisfying

lim
t→T1.1

∥v(t)∥2 = +∞, (3.3)

with
T1.1 ≤ 1

A1.1
∥v0∥

1−p2
2 (3.4)

and
A2

1.1 = (p2 − 1)2

4 ∥v0∥−p2−3 (κ2 − 8E1.1(0)∥v0∥2) .
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Proof. Let
H(t) := ∥v(t)∥2.

Then by a simple calculation, we have

H ′(t) = 2(v, vt) (3.5)

and
H ′′(t) = 2⟨vtt, v⟩ + 2∥vt∥2. (3.6)

Multiplying the Equation (1.1) by v and integrating over Ω, it gives

⟨vtt, v⟩ +m(vt, v) + ∥∆v∥2 −
n∑

i=1

∫

Ω

vxi
σi(vxi

)dx = 0. (3.7)

Moreover, we give another auxiliary function

Φ(t) := ∥vt∥2.

Together with (3.6) and (3.7), it gives

1
2H

′′(t) + m

2 H
′(t) − Φ(t) + ∥∆v∥2 =

n∑

i=1

∫
vxiσi(vxi)dx. (3.8)

In addition, multiplying (1.1) by vt yields

d

dt

(
1
2Φ(t) + 1

2∥∆v∥2
)

+m∥vt∥2 = d

dt




n∑

i=1

∫

Ω

Gi(vxi
)dx


 . (3.9)

Integrating (3.9) over (0, t) and combining (H2) we have

1
2Φ(t) + 1

2∥∆v∥2 +m

t∫

0

∥vτ∥2dτ − E1.1(0) =
n∑

i=1

∫

Ω

Gi(vxi)dx

≤ 1
p2 + 1




n∑

i=1

∫

Ω

vxi
σi(vxi

)dx


 ,

(3.10)

which together with (3.8) gives

1
2H

′′(t) + m

2 H
′(t) + (p2 + 1)E1.1(0) ≥ p2 + 3

2 Φ(t). (3.11)
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Using the Cauchy–Schwarz inequality we obtain

(H ′(t))2 ≤ 4H(t)Φ(t). (3.12)

Further from (3.12) and (3.11), it follows that

H ′′(t)H(t) − p2 + 3
4 (H ′(t))2 +mH ′(t)H(t) + 2(p2 + 1)E1.1(0)H(t) ≥ 0. (3.13)

Comparing (3.13) with (2.3), it is easy to see that

ξ1.1 := p2 + 3
4 > 1, γ1.1 := m, β1.1 := 2(p2 + 1)E1.1(0) > 0. (3.14)

Moreover, we can verify that

H(0) = ∥v0∥2 > 0, H ′(0) = 2(v0, v1) > 0. (3.15)

Obviously, by using Lemma 2.1 along with (3.13)–(3.15) and initial conditions (3.1),
(3.2), we can deduce that there exists a T1.1 satisfying (3.4) such that (3.3) holds.

3.2. BLOWUP PHENOMENA FOR THE IBVP OF (1.2)
WITH ARBITRARY POSITIVE INITIAL ENERGY

For the IBVP of (1.2), we also give the following total energy functional

E1.2(t) = 1
2∥vt||2 + 1

2∥∆v∥2 + α

2 ∥∇v∥2 −
n∑

i=1

∫

Ω

Gi(vxi)dx−
∫

Ω

F (v)dx, (3.16)

the Nehari functional

I1.2(v) = ∥∆v∥2 + α∥∇v∥2 −
n∑

i=1

∫

Ω

vxi
σi(vxi

)dx−
∫

Ω

vf(v)dx (3.17)

and unstable manifold

V1.2 := {v ∈ H | I1.2(v) < 0}.
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From the process of constructing the differential inequality for blowup in The-
orem 3.1, it can be found that the nonlinear strain term

∑n
i

∂
∂xi

σi(vxi) in (1.1) is
actually a bridge linking the auxiliary functions H(t) and Φ(t). By the same argument
as Theorem 3.1, we can also get the finite time blowup result for the IBVP of (1.2)
with an explicit upper bound estimate of blowup time, even if the structure of (1.2)
contains both

∑n
i

∂
∂xi

σi(vxi
) and f(v).

Theorem 3.2. Let v0 ∈ H, v1 ∈ L2(Ω), (H1) and (H2) hold. If

α := 2(v0, v1) − 4
p− 1∥v0∥2 > 0 (3.18)

and

α2 > 8E1.2(0)∥v0∥2 > 0 (3.19)

with p := min{p1, p2}. Then there exists a time T1.2 which makes the solution of
the IBVP of (1.2) blow up in finite time, i.e.,

lim
t→T1.2

∥v(t)∥2 = +∞, (3.20)

here

T1.2 ≤ 1
A1.2

∥v0∥ 1−p
2 (3.21)

and

A2
1.2 = (p− 1)2

4 ∥v0∥−p−3 (α2 − 8E1.2(0)∥v0∥2) .

Proof. We multiply both sides of (1.2) by v and integrate on Ω, it follows that

⟨vtt, v⟩ + (vt, v) + ∥∆v∥2 −
n∑

i=1

∫

Ω

vxiσi(vxi)dx−
∫

Ω

vf(v)dx = 0, (3.22)

which together with (3.5), (3.6) and the definition of Φ(t) gives that

1
2H

′′(t) − Φ(t) + 1
2H

′(t) + ∥∆v∥2 =
n∑

i=1

∫

Ω

vxi
σi(vxi

)dx+
∫

Ω

vf(v)dx. (3.23)

Then integrating both sides of (1.2) by vt, we have

d

dt

(
1
2Φ(t) + 1

2∥∆v∥2
)

+ ∥vt∥2 = d

dt




n∑

i=1

∫

Ω

Gi(vxi
)dx+

∫

Ω

F (v)dx


 . (3.24)
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Therefore, by (3.24) and conditions (H1), (H2), we can derive

1
2Φ(t) + 1

2∥∆v∥2 +
t∫

0

∥vτ∥2dτ − E1.2(0)

=
n∑

i=1

∫

Ω

Gi(vxi
)dx+

∫

Ω

F (v)dx

≤ 1
p2 + 1




n∑

i=1

∫

Ω

vxi
σi(vxi

)dx


+ 1

p1 + 1

∫

Ω

vf(v)dx

≤ 1
p+ 1




n∑

i=1

∫

Ω

vxi
σi(vxi

)dx+
∫

Ω

vf(v)dx


 ,

(3.25)

where p = min{p1, p2}. Combining (3.25) and (3.23) to get

1
2H

′′(t) + 1
2H

′(t) + (p+ 1)E1.2(0) ≥ p+ 3
2 Φ(t). (3.26)

Due to the Cauchy–Schwarz inequality (3.12), the above inequality becomes

H ′′(t)H(t) − p+ 3
4 (H ′(t))2 +H ′(t)H(t) + 2(p+ 1)E1.2(0)H(t) ≥ 0. (3.27)

Hence, we can utilize Lemma 2.1 in a same way to get

ξ1.2 := p+ 3
4 > 1, γ1.2 := 1, β1.2 := 2(p+ 1)E1.2(0) > 0. (3.28)

Further, it follows Lemma 2.1, (3.27), (3.28) and initial conditions (3.18), (3.19) that
there exists a T1.2 satisfying (3.21) such that (3.20) holds.

3.3. BLOWUP PHENOMENA FOR THE IBVP OF (1.3)
WITH ARBITRARY POSITIVE INITIAL ENERGY

In this subsection, we begin to consider the strong damping ∆vt contained in the
fourth-order strain equation. Different from the nonlinear strain wave equation with
only linear weak damping vt, if we still use Φ(t) = ∥vt∥2 and H(t) = ∥v∥2 as the
auxiliary functions to prove the arbitrary positive initial energy blowup based on
Lemma 2.1, then there will be a new term (∇vt,∇v) caused by strong damping ∆vt
that we cannot handle. In order to establish the arbitrary positive initial energy
blowup theorem for the IBVP of (1.3), we establish a new auxiliary function M(t) and
choose the following differential inequality actually contained in Lemma 2.1.
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Lemma 3.3 ([10]). Suppose that a positive, twice differentiable function ψ(t) satisfies
the inequality

ψ′′(t)ψ(t) − (1 + µ)(ψ′(t))2 ≥ 0, t > 0, (3.29)

where µ > 0. If ψ(0) > 0 and ψ′(0) > 0, then there exists 0 < t1 ≤ ψ(0)
µψ′(0) such that

ψ(t) tends to ∞ as t → t1.

Next, for the IBVP of (1.3), the energy functional is defined by

E1.3(t) := 1
2∥vt∥2 + 1

2∥∆v∥2 + 1
2∥∇v∥2 −

∫

Ω

F (v)dx−
n∑

i=1

∫

Ω

Gi(vxi)dx, (3.30)

and the Nehari functional

I1.3(v) := ∥∆v∥2 + ∥∇v∥2 −
∫

Ω

vf(v)dx−
n∑

i=1

∫

Ω

vxi
σi(vxi

)dx. (3.31)

By a simple calculation, it follows that

E1.3(t) +
t∫

0

∥∇vτ∥2dτ = E1.3(0). (3.32)

Besides, we give the following unstable set

V1.3 := {v ∈ H | I1.3(v) < 0}.

By the discussion similar to Lemma 6.1 in [11], we derive the following conclusion.

Lemma 3.4 (Invariant set V1.3 for E1.3(0) > 0). Let v be the local solution to the
IBVP of (1.3) with v0 ∈ H and v1 ∈ L2(Ω), f(v) and σi(vxi

) satisfy (H1) and (H2),
respectively. Assume that E1.3(0) > 0 and

∥∇v0∥2 + 2(v0, v1) > 2(C + 1)(p+ 1)
C(p− 1) E1.3(0), (3.33)

then V1.3 is a invariant set provided v0 ∈ V1.3. Here p = min{p1, p2} > 1 and C denote
the constant in Poincaré inequality

∥∇v∥2 ≥ C∥v∥2. (3.34)
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Proof. Let T be the maximal interval of existence time for v. Arguing by contradiction,
we assume that there exists a first time t̄ ∈ (0, T ] such that

I1.3(v(t̄)) = 0 (3.35)

and

I1.3(v(t)) < 0, t ∈ [0, t̄). (3.36)

Integrating both sides of (1.3) by v with respect to Ω, we derive

⟨vtt, v⟩ + (∇vt,∇v) + ∥∆v∥2 + ∥∇v∥2 −
n∑

i=1

∫

Ω

vxiσi(vxi)dx−
∫

Ω

vf(v)dx = 0. (3.37)

Then we define the auxiliary function

y(t) := ∥∇v∥2 + 2(v, vt).

From (3.31) and (3.37), we gain

y′(t) = 2(∇v,∇vt) + 2⟨vtt, v⟩ + 2∥vt∥2 = 2∥vt∥2 − 2I1.3(v). (3.38)

Moreover, by (3.36) we have y′(t) > 0 on the interval [0, t̄), which implies that y(t) is
a strictly increasing function. Hence

∥∇v∥2 + 2(v, vt) ≥ ∥∇v0∥2 + 2(v0, v1), t ∈ [0, t̄).

From (3.33) and the continuity of y(t) in t, it yields

∥∇v(t̄)∥2 + 2(v(t̄), vt(t̄)) >
2(C + 1)(p+ 1)

C(p− 1) E1.3(0), t ∈ [0, t̄). (3.39)

Recalling (3.32), (3.30), (3.31) and conditions (H1), (H2), it gives

E1.3(0) ≥ E1.3(t)

= 1
2∥vt∥2 + 1

2
(
∥∆v∥2 + ∥∇v∥2)

−
∫

Ω

F (v)dx−
n∑

i=1

∫

Ω

Gi(vxi)dx

≥ 1
2∥vt∥2 + 1

2
(
∥∆v∥2 + ∥∇v∥2)

− 1
p+ 1



∫

Ω

vf(v)dx+
n∑

i=1

∫

Ω

vxiσi(vxi)dx




= 1
2∥vt∥2 + p− 1

2(p+ 1)
(
∥∆v∥2 + ∥∇v∥2)+ 1

p+ 1I1.3(v),

(3.40)
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which along with (3.35), (3.34) and the Cauchy–Schwarz inequality yields

E1.3(0) ≥ E1.3(t̄)

≥ 1
2∥vt(t̄)∥2 + p− 1

2(p+ 1)∥∇v(t̄)∥2

≥ C(p− 1)
2(C + 1)(p+ 1)∥vt(t̄)∥2 + C(p− 1)

2(C + 1)(p+ 1)∥∇v(t̄)∥2

+ p− 1
2(C + 1)(p+ 1)∥∇v(t̄)∥2

≥ C(p− 1)
2(C + 1)(p+ 1)∥vt(t̄)∥2 + C(p− 1)

2(C + 1)(p+ 1)∥∇v(t̄)∥2

+ C(p− 1)
2(C + 1)(p+ 1)∥v(t̄)∥2

≥ C(p− 1)
2(C + 1)(p+ 1)

(
∥∇v(t̄)∥2 + 2(v(t̄), vt(t̄))

)
.

(3.41)

Obviously, (3.41) contradicts (3.39). This proves the invariance of V1.3 for arbitrary
positive initial energy case E1.3(0) > 0.

Theorem 3.5. Let v0 ∈ H, v1 ∈ L2(Ω), f(v) and σi(vxi
) satisfy assumptions (H1)

and (H2). Suppose that v0 ∈ V1.3, E1.3(0) > 0, (v0, v1) > 0 and (3.33) holds, then
the IBVP of (1.3) admits a blowup solution with the maximum existence time

T1.3 ≤ 2(C + 1)∥v0∥2 + 2(C + 1)T0∥∇v0∥2

(p− 1)(v0, v1) . (3.42)

Proof. Arguing by contradiction, assume that the solution v(t) of (1.3) exists globally,
i.e., the maximum existence time T = ∞. Let

M(t) := ∥v∥2 +
t∫

0

∥∇v∥2dτ + (T0 − t)∥∇v0∥2, t ∈ [0, T0]. (3.43)

Obviously, for any t ∈ [0, T0] we have M(t) > 0. Due to the continuity of M(t) in t,
we can see that there exists a constant ϵ > 0 such that

M(t) ≥ ϵ, t ∈ [0, T0]. (3.44)

By a simple calculation, it follows that

M ′(t) = 2(v, vt) + ∥∇v∥2 − ∥∇v0∥2

= 2(v, vt) + 2
t∫

0

∫

Ω

∇vτ∇vdxdτ, t ∈ [0, T0].
(3.45)
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According to (3.45), (3.31) and (3.37), we have

M ′′(t) = 2(∇vt,∇v) + 2⟨vtt, v⟩ + 2∥vt∥2 = 2∥vt∥2 − 2I1.3(v), t ∈ [0, T0]. (3.46)

Through elementary calculation and the Cauchy–Schwarz inequality, we show the
following identities

(M ′(t))2 = 4


(vt, v)2 + 2(vt, v)

t∫

0

∫

Ω

∇vτ∇vdxdτ


+ 4




t∫

0

∫

Ω

∇vτ∇vdxdτ




2

.

(3.47)
Using the Cauchy–Schwarz inequality, it yields




t∫

0

∫

Ω

∇vτ∇vdxdτ




2

≤
t∫

0

∥∇vτ∥dτ
t∫

0

∥∇v∥dτ

and

2(vt, v)
t∫

0

∫

Ω

∇vτ∇vdxdτ ≤ 2∥vt∥∥v∥




t∫

0

∥∇vτ∥2dτ




1
2



t∫

0

∥∇v∥2dτ




1
2

≤ ∥vt∥2
t∫

0

∥∇v∥2dτ + ∥v∥2
t∫

0

∥∇vτ∥2dτ.

Hence, by the above inequalities, (3.47) becomes

(M ′(t))2 = 4


∥vt∥2 +

t∫

0

∥∇vτ∥2dτ




∥v∥2 +

t∫

0

∥∇v∥2dτ




≤ 4M(t)


∥vτ∥2 +

t∫

0

∥∇vτ∥2dτ


 .

(3.48)

Then from (3.46) and (3.48), we have

M ′′(t)M(t) − λ+ 3
4 (M ′(t))2

≥ M(t)


M ′′(t) − (λ+ 3)


∥vt∥2 +

t∫

0

∥∇vτ∥2dτ






≥ M(t)


−(λ+ 1)∥vt∥2 − 2I1.3(v) − (λ+ 3)

t∫

0

∥∇vτ∥2dτ


 .

(3.49)
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If we set

ρ(t) := −(λ+ 1)∥vt∥2 − 2I1.3(v) − (λ+ 3)
t∫

0

∥∇vτ∥2dτ, (3.50)

then by (3.40) and the Cauchy–Schwarz inequality, it follows that

ρ(t) ≥ (p− λ)∥vt∥2 + (p− 1)
(
∥∆v∥2 + ∥∇v∥2)

− 2(p+ 1)E1.3(0) + (2p− λ− 1)
t∫

0

∥∇vτ∥2dτ

≥ (p− λ)∥vt∥2 + 2(p− λ)
C

∥∇v∥2 + (p− 1)C − 2(p− λ)
C

∥∇v∥2

− 2(p+ 1)E1.3(0) + (2p− λ− 1)
t∫

0

∥∇vτ∥2dτ

≥ (p− λ)∥vt∥2 + 2(p− λ)∥v∥2 + (p− 1)C − 2(p− λ)
C

∥∇v∥2

− 2(p+ 1)E1.3(0) + (2p− λ− 1)
t∫

0

∥∇vτ∥2dτ

≥ (p− λ)
(
∥vt∥2 + 2∥v∥2)+ (p− 1)C − 2(p− λ)

C
∥∇v∥2

− 2(p+ 1)E1.3(0) + (2p− λ− 1)
t∫

0

∥∇vτ∥2dτ

≥ (p− λ)
(
∥v∥2 + 2(vt, v)

)
+ (p− 1)C − 2(p− λ)

C
∥∇v∥2

− 2(p+ 1)E1.3(0) + (2p− λ− 1)
t∫

0

∥∇vτ∥2dτ.

(3.51)

Here p > 1 and λ := C+p
C+1 ∈ (1, p), this implies 2p− λ− 1 > 0. Then by (3.51) and the

monotonically increasing of
{
t 7→ ∥∇v∥2 + 2(v, vt)

}
since I1.3(0) < 0, we gain

ρ(t) ≥ C(p− 1)
C + 1

(
2(vt, v) + ∥∇v∥2)− 2(p+ 1)E1.3(0)

≥ C(p− 1)
C + 1

(
2(v1, v0) + ∥∇v0∥2)− 2(p+ 1)E1.3(0)

=: ϱ.

(3.52)
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Further by (3.33) we derive

ρ(t) ≥ ϱ > 0. (3.53)

Hence, from (3.49), (3.44) and (3.33), we arrive at

M ′′(t)M(t) −
(

1 + p− 1
4C + 4

)
(M ′(t))2 ≥ ϵϱ > 0, t ∈ [0, T0], (3.54)

where p = min{p1, p2} > 1. Since (v0, v1) > 0, we have

M(0) = ∥v0∥2 + T0∥∇v0∥2 > 0 (3.55)

and

M ′(0) = 2(v0, v1) > 0. (3.56)

Obviously, by Lemma 3.3 along with (3.54)–(3.56), it implies that there exists a T1.3 > 0
such that (3.42) holds and

lim
t→T1.3

M(t) = ∞.

This completes the proof.

3.4. BLOWUP PHENOMENA FOR THE IBVP OF (1.4)
WITH ARBITRARY POSITIVE INITIAL ENERGY

For the IBVP of (1.4), we define the energy functional of the form

E1.4(t) := 1
2∥vt||2 + 1

2∥∆v∥2 + 1
2∥∇v∥2 −

∫

Ω

F (v)dx−
n∑

i=1

∫

Ω

Gi(vxi)dx, (3.57)

the Nehari functional

I1.4(v) := ∥∆v∥2 + ∥∇v∥2 −
∫

Ω

vf(v)dx−
n∑

i=1

∫

Ω

vxi
σi(vxi

)dx. (3.58)

The unstable set V1.4 is given by

V1.4 := {v ∈ H | I1.4(v) < 0}.

As shown in [11, Theorem 6.2], the blow-up result of the solution for (1.4) at
arbitrary positive initial energy level has been proved. Next we shall estimate the
upper bound of the blow-up time based on the established conclusion in [11].
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Theorem 3.6. Let v0 ∈ H, v1 ∈ L2(Ω), (H1) and (H2) hold. Assume that v0 ∈ V1.4,
E1.4(0) > 0, (v0, v1) > 0, r = 1 and

∥∇v0∥2 + ∥v0∥2 + 2(v0, v1) > 2(C + 1)(p+ 1)
C(p− 1) E1.4(0).

Then there exists a T1.4 as

T1.4 ≤ 2(C + 1)(T0 + 1)∥v0∥2 + 2(C + 1)T0∥∇v0∥2

(p− 1)(v0, v1) (3.59)

such that the solution to the IBVP of (1.4) blows up in finite time. Here C and p are
same as that in Lemma 3.4.
Proof. As shown in [11, Theorem 6.2], the authors constructed the following differential
inequality

B′′(t)B(t) −
(

1 + p− 1
2C + 4

)
(B′(t))2 > 0 (3.60)

to prove the blowup solution of (1.4) with r = 1 and E1.4(0) > 0, where C is an
embedded constant shown in (3.34), p > 1 is same as that in Theorem 3.5. However,
in order to facilitate the comparison of the upper bounds of blowup time for different
models in subsequent Section 3.6, it is necessary to recalculate the coefficient in (3.60).
With regards to this, we replace C+2 in (6.6) with C+1 in the proof of [11, Lemma 6.1]
(the invariance of set V1.4 for E1.4(0) > 0). Then in the proof of [11, Theorem 6.5],
λ := p − C(p−1)

C+2 should be changed to λ := p − C(p−1)
C+1 . In this way, we shall derive

the second order differential inequality

B′′(t)B(t) −
(

1 + p− 1
4C + 4

)
(B′(t))2 > 0. (3.61)

Moreover, the auxiliary function in (3.61) is as follows

B(t) := ∥v∥2 +
t∫

0

(
∥∇v(τ)∥2 + ∥v(τ)∥2) dτ + (T0 − t)

(
∥∇v0∥2 + ∥v0∥2)

same as (3.60) for t ∈ [0, T0]. Naturally, we can deduce that

B(t) > 0, t ∈ [0, T0]. (3.62)

By a direct calculation, it gives

B′(t) = 2(v, vt) + (∥∇v∥2 + ∥v∥2) − (∥∇v0∥2 + ∥v0∥2), t ∈ [0, T0].

Then by (3.62) and the fact that (v0, v1) > 0, we have B(0) > 0 and B′(0) > 0.
Together with Lemma 3.3 and (3.61), it follows that there exists a T1.4 > 0 such that
(3.59) holds and

lim
t→T1.4

B(t) = ∞,

which completes the proof.
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3.5. COROLLARY

In fact, the blowup theory in Lemma 3.3 not only can be used to the fourth-order strain
wave equation with ∆vt, but also the fourth-order nonlinear strain wave equation (1.2)
with only linear weak damping vt. The key is to derive an second-order differential
inequality consistent with the form of (3.29) shown in Lemma 3.3 by using the classical
concavity function method. We illustrate this with the following corollary.

Corollary 3.7. For the IBVP of (1.2) with α = 1 and

v0 ∈ V1.2, E1.2(0) > 0, (v0, v1) > 0.

Let

η(t) := ∥v∥2 +
t∫

0

∥v∥2dτ + (T0 − t)∥v0∥2, t ∈ [0, T0],

it gives

η′(t) := 2(v, vt) + ∥v∥2 − ∥v0∥2, t ∈ [0, T0].

Replacing M(t) in Theorem 3.5 by η(t) and repeating the discussion similar to the
proof of Theorem 3.5, we can also easily get the following differential inequality

η′′(t)η(t) −
(

1 + p− 1
4C + 4

)
(η′(t))2

> 0, t ∈ [0, T0], (3.63)

where p = min{p1, p2} > 1, C is same as that in (3.34). Notice that

η(0) = ∥v0∥2 + T∥v0∥2 > 0, η′(0) = 2(v0, v1) > 0. (3.64)

By adopting Lemma 3.3 together with (3.63) and (3.64), it follows that there exists
a 0 < T∗ ≤ T0 such that

lim
t→T∗

η(t) = ∞,

moreover,

T∗ ≤ 2(C + 1)(1 + T0)∥v0∥2

(p− 1)(v0, v1) . (3.65)

3.6. EFFECTS OF THE DISSIPATIVE TERMS
ON ARBITRARY POSITIVE INITIAL ENERGY BLOWUP

In the present subsection, we shall reveal the influence mechanism of the linear weak
damping vt and strong damping ∆vt on the arbitrary positive initial energy blowup.
We discuss this issue by comparing the upper bound of blowup time. In general, the
larger the upper bound of blowup time, the less likely it is that the blowup will occur.
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3.6.1. Effect of linear weak damping vt on arbitrary positive initial energy blowup
In order to compare the upper bounds of the arbitrary initial energy blowup time,
we need to keep a single variable term vt. Hence, we can consider the upper bounds
of blowup time T1.3 and T1.4. In addition, we need to control the IBVP of (1.3) to
have the same initial value as the IBVP of (1.4). By observing the initial conditions
involved in Theorem 3.5 and Theorem 3.6, we can judge that this is easily achieved.

Through a simple comparison, we find that

2(C + 1)
(
∥v0∥2 + T0∥∇v0∥2)

(p− 1)(v0, v1)︸ ︷︷ ︸
the upper bound of T1.3, (1.3) with ∆vt

≤ 2(C + 1)
(
(1 + T0)∥v0∥2 + T0∥∇v0∥2)

(p− 1)(v0, v1) .

︸ ︷︷ ︸
the upper bound of T1.4, (1.4) with ∆vt and vt

Obviously, the upper bound of T1.3 is less than the upper bound of T1.4. Therefore, we
can draw a conclusion that weak damping vt makes the blowup time longer. In other
words, it is helpful for the global existence of solution.

3.6.2. Effect of linear strong damping ∆vt on arbitrary positive initial energy blowup
To investigate the effect of strong damping on arbitrary positive initial blowup, we
keep the other structures in the equation except ∆vt consistent. Therefore, we choose
the upper bound of the arbitrary positive initial energy blowup time corresponding to
Equation (1.2) with α = 1 and Equation (1.4) for comparison, i.e., (3.59) and (3.65).
Obviously, when the IBVP of (1.2) has the same initial data as the IBVP of (1.4),
the following inequality

2(C + 1)(1 + T0)∥v0∥2

(p− 1)(v0, v1)︸ ︷︷ ︸
the upper bound of T∗, without ∆vt

<
2(C + 1)(1 + T0)∥v0∥2 + 2(C + 1)T0∥∇v0∥2

(p− 1)(v0, v1)︸ ︷︷ ︸
the upper bound of T1.4, with ∆vt

holds, which implies that the strong damping ∆vt makes the blowup more difficult to
happen.
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