PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal energy storage in buildings: Opportunities and challenges

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energy sector is a majorarea that is responsible for the country development. Almost 40% of the total energy requirement of an EU country is consumed by the building sector and 60% of which is only used for heating and cooling requirements. This is a prime concern as fossil fuel stocks are depleting and global warming is rising. This is where thermal energy storage can play a major role and reduce the dependence on the use of fossil fuels for energy requirements (heating and cooling) of the building sector. Thermal energy storage refers to the technology which is related to the transfer and storage of heat energy predominantly from solar radiation, alternatively to the transfer and storage of cold from the environment to maintain a comfortable temperature for the inhabitants in the buildings by providing cold in the summer and heat in the winter. This work is an extensive study on the use of thermal energy storage in buildings. It discusses different methods of implementing thermal energy storage into buildings, specifically the use of phase change materials, and also highlights the challenges and opportunities related to implementing this technology. Moreover, this work explains the principles of different types and methods involved in thermal energy storage.
Twórcy
autor
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
  • Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100, Gliwice, Poland
Bibliografia
  • [1] De Gracia A., Cabeza L.F.: Phase change materials and thermal energy storage for buildings. Energ. Buildings 103(2015), 414–419.
  • [2] Osterman E., Butala V., Stritih U.: PCM thermal storage system for “free” heating and cooling of buildings. Energ. Buildings 106(2015), 125–133.
  • [3] Lizana J., Chacartegui R., Barrios-Padura A., Ortiz C.: Advanced lowcarbon energy measures based on thermal energy storage in buildings: A review. Renew. Sust. Energ. Rev. 82(2018), 3705–3749.
  • [4] Sarbu I., Sebarchievici C.: A comprehensive review of thermal energy storage. Sustainability 10(2018), 1, 191.
  • [5] Hedegaard K., Balyk O.: Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks. Energy 63(2013), 356–365.
  • [6] Kalaiselvam S., Parameshwaran R.: Applications of thermal energy storage systems. In: Thermal Energy Storage Technologies for Sustainability. Academic Press, 2014, 359–366.
  • [7] Qureshi W.A., Nair N.K.C., Farid M.M.: Impact of energy storage in buildings on electricity demand side management. Energ. Convers. Manage. 52(2011), 5, 2110–2120.
  • [8] Kerskes H.: Thermochemical Energy Storage. Storing Energy. Univ. of Stuttgart, Stuttgart 2016.
  • [9] Morofsky E.L.: History of thermal energy storage. In: Thermal Energy Storage for Sustainable Energy Consumption (H.Ö Paksoy, Ed.), NATO Science Series, vol. 234. Springer, Dordrecht 2007.
  • [10] Stritih U.: Heat transfer enhancement in latent heat thermal storage system for buildings. Energ. Buildings 35(2003), 11, 1097–1104.
  • [11] www.danfoss.com/en/about-danfoss/insights-for-tomorrow/integrated-energy-systems/thermal-energy-storage/ (accessed 12 March 2022).
  • [12] Ma Y., Kelman A., Dally A., Borrelli F.: Predictive control for energy efficient buildings with thermal storage: modeling, stimulation, and experiments. IEEE Cont.Syst. 32(2012), 1, 44–64.
  • [13] Zhang Y., Zhou G., Lin K., Zhang Q., Di H.: Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 42(2007),6, 2197–2209.
  • [14] www.meeedesignservices.com (accessed 7 Feb. 2022).
  • [15] Reynders G., Amaral Lopes R., Marszal-Pomianowska A., Aelenei D., Martins J., Saelens D.: Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage. Energ. Buildings 166(2018),372–390.
  • [16] Odukomaiya A., Woods J., James N., Kaur S., Gluesenkamp K.R., Kumar N., Mumme S., Jackson R., Prasher R.: Addressing energy storage needs at lower cost via on-site thermal energy storage in buildings. Energ. Environ. Sci. 14(2021),5315-5329.
  • [17] Ostry M., Charvat P.: Materials for advanced heat storage in buildings. Procedia Engineer. 57(2013), 837–843.
  • [18] Dinçer I., Rosen M.A.: Energy and exergy analyses of thermal energy storage systems. In: Thermal Energy Storage: Systems and Applications. Wiley, 2010, 233–334.
  • [19] Kalaiselvam S., Parameshwaran R.: Thermal energy storage technologies. In: Thermal Energy Storage Technologies for Sustainability. Academic Press, 2014, 57–64.
  • [20] Dincer I., Dost S., Li X.: Performance analyses of sensible heat storage systems for thermal energy storage. Int. J. Energ. Res. 21(1997), 1157–1171.
  • [21] Dincer I., Rosen M.A.: Energetic, environmental and economic aspects of thermal energy storage systems for cooling capacity. Appl. Therm. Eng. 21(2001, 11, 1105–1117.
  • [22] Gautam A., Saini R.P.: A review on technical, applications and economic aspect of packed bed solar thermal energy storage system. J. Energ. Stor. 27(2020), 101046.
  • [23] Bai F., Wang Y., Wang Z., Sun Y., Beath A.: Economic evaluation of shell-andtube latent heat thermal energy storage for concentrating solar power applications. Energy Proced. 69(2015), 737–747.
  • [24] Zhao B., Cheng M., Liu C., Dai Z.: System-level performance optimization of molten-salt packed-bed thermal energy storage for concentrating solar power. Appl. Energ. 226(2018), 225–239.
  • [25] Nithyanandam K., Pitchumani R.: Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy 64(2014), 793–810.
  • [26] Habeebullah B.A.: Economic feasibility of thermal energy storage systems. Energ. Buildings 39(2007) 3, 355–363.
  • [27] Wagner S.J., Rubin E.: Economic implications of thermal energy storage for concentrated solar thermal power. Renew. Energ. 61(2014), 81–95.
  • [28] Yang, T., Liu W., Kramer G., Sun Q.: Seasonal thermal energy storage: A techno-economic literature review. Renew. Sust. Energ. Rev. 139(2021), 110732.
  • [29] Lai C.S., Locatelli G.: Economic and financial appraisal of novel large-scale energy storage technologies. Energy 214(2020), 118954.
  • [30] Farid M.M., Chen X.D.: Domestic electrical space heating with heat storage. Proc. Inst. Mech. Eng. A.-J. Power Energ. 213(1999), 2, 83–92.
  • [31] Lin K., Zhang Y., Xu X., Di H., Yang R., Qin P.: Experimental study of under floor electric heating system with shape-stabilized PCM plates. Energy Build.37(2005) 3, 215–220.
  • [32] Kenneth I.P., Gates J.: Solar thermal storage using phase change material for space heating of residential buildings. In: Proc. RICS Foundation Construction and Building Research Conf. Univ. of Brighton, 2001.
  • [33] Heier J., Bales C., Martin V.: Combining thermal energy storage with buildings – a review. Renew. Sust. Energ. Rev. 42(2015), 1305–1325.
  • [34] Norén A, Akander J., Isfält E., Söderström O.: The effect of thermal inertia on energy requirement in a Swedish building-results obtained with three calculation models. Int. J. Low Energ. Sust. Buildings 1(1999), 1–16.
  • [35] Ståhl F.: Influence of thermal mass on the heating and cooling demands of a building unit. Chalmerstekniskahögskola, Gothenburg 2009.
  • [36] Yahay N.A., Ahmad H.: Numerical investigation of indoor air temperature with the application of PCM gypsum board as ceiling panels in buildings. Procedia Engineer. 20(2011), 238–248.
  • [37] Peippo K., Kauranen P., Lund P.D.: A multicomponent PCM wall optimized for passive solar heating. Energ. Buildings 17(1991), 4, 259–270.
  • [38] Scalat S., Banu D., Hawes D., Parish J., Haghighata F., Feldman D.: Full scale thermal testing of latent heat storage in wallboard. Sol. Energ. Mat. Sol. Cell.44(1996), 1, 49–61.
  • [39] Velraj R.: Sensible heat storage for solar heating and cooling systems. In: Advances in Solar Heating and Cooling (R.Z. Wang, T.S. Ge, Eds.). Woodhead, 2016, 399–428.
  • [40] Kalaiselvam S., Parameshwaran R.: Sensible Thermal Energy Storage. In: Thermal Energy Storage Technologies for Sustainability. Academic Press, 2014, 65–81.
  • [41] Karlsson J., Wadsö L., Öberg M.: A conceptual model that simulates the influence of thermal inertia in building structures. Energ. Buildings 60(2013), 146–151.
  • [42] Rempel A., Rempel A.: Rocks, clays, water, and salts: Highly durable, infinitely rechargeable, eminently controllable thermal batteries for buildings. Geosciences 3(2013) 1, 63–101.
  • [43] Al-Sanea S.A., Zedan M.F., Al-Hussain S.N.: Effect of thermal mass on performance of insulated building walls and the concept of energy savings potential. Appl. Energ. 89(2012), 1, 430–442.
  • [44] Zhu L., Hurt R., Correia D., Boehm R.: Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house. Energ. Buildings 41(2009), 3, 303–310.
  • [45] Lizana J., Chacartegui R., Padura A.B., Valverde J.M.: Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energ. 203(2017), 219–239.
  • [46] Ben Romdhane S., Amamo A., Ben Khalifa R., Saïd N.M., Younsi Z., Jemni A.: A review on thermal energy storage using phase change materials in passive building applications. J. Build. Eng. 32(2020), 101563.
  • [47] Koo J., So H., Hong S. W., Hong H.: Effects of wallboard design parameters on the thermal storage in buildings. Energ. Buildings 43(2011), 8, 1947–1951.
  • [48] Guarino F., Athienitis A., Cellura M., Bastien D.: PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates. Appl. Energ. 185(2017), 95–106.
  • [49] Benlekkam M.L., Nehari D.: Hybrid nano improved phase change material for latent thermal energy storage system: Numerical study. Arch. Mech. Eng. 69(2022),1, 77–98.
  • [50] Noël J.A., Kahwaji S., Desgrosseilliers L., Groulx D., White M.A.: Phase change materials. In: Storing Energy (T.M. Letcher, Ed.). Elsevier, 2016, 249–272.
  • [51] Tyagi V.V., Buddhi D.: PCM thermal storage in buildings: A state of art. Renew. Sust. Energ. Rev. 11(2007), 6, 1146–1166.
  • [52] Yuan Y., Zhang N., Tao W., Cao X., He Y.: Fatty acids as phase change materials: A review. Renew. Sust. Energ. Rev. 29(2014), 482–498.
  • [53] Sharma A., Tyagi V.V., Chen C.R., Buddhi D.: Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 13(2009), 2, 318–345.
  • [54] Casini M.: Phase-change materials. In: Smart Buildings. Woodhead, 2016, 179–218.
  • [55] Abuelnuor A.A.A., Omara A.A.M., Saqr K.M., Elhag I.H.I.: Improving indoor thermal comfort by using phase change materials: A review. Int. J. Energ. Res. 42(2018),6, 2084–2103.
  • [56] Marani A., Nehdi M.L.: Integrating phase change materials in construction materials: Critical review. Const. Build. Mater. 217(2019), 36–49.
  • [57] Jamekhorshid A., Sadrameli S.M., Farid M.: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sust. Energ. Rev. 31(2014), 531–542.
  • [58] Cabeza L.F., Castellon C., Nogues M., Medrano M, Leppers R., Zubillaga O.: Use of microencapsulated PCM in concrete walls for energy savings. Energ. Buildings 39(2007), 2, 113–119.
  • [59] Castellón C., Medrano M., Roca J., Cabeza L.F., Navarro M.E., Fernández A.I.: Effect of microencapsulated phase change material in sandwich panels. Renew. Energ. 35(2010), 2370–2374.
  • [60] Ramakrishnan S., Wang X., Sanjayan J., Wilson J.: Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heat wave events. Appl. Energ. 194(2017), 410–421
  • [61] De Gracia A., Rincón L., Castell A., Jiménez M., Boer D., Medrano M.: Life cycle assessment of the inclusion of phase change materials (PCM) in experimental buildings. Energ. Buildings 42(2010), 1517–1523.
  • [62] Castell A., Menoufi K., de Gracia A., Rincón L., Boer D., Cabeza L.F.: Life cycle assessment of alveolar brick construction system incorporating phase change materials (PCMs). Appl. Energ. 101(2013), 600–608.
  • [63] Li M., Wu Z., Tan J.: Heat storage properties of the cement mortar incorporated with composite phase change material. Appl. Energ. 103(2013), 393–399.
  • [64] Ramakrishnan S., Wang X., Sanjayan J., Wilson J.: Thermal energy storage enhancement of lightweight cement mortars with the application of phase change materials. Procedia Engineer. 180(2017), 1170–1177.
  • [65] Liu Y., Xie M., Gao X., Yang Y., Sang Y.: Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage. Appl. Therm. Eng. 140(2018), 112–119.
  • [66] Hawes D.W., Banu D., Feldman D.: Latent heat storage in concrete II, Sol. Energ. Mater. 21(1990), 61–80.
  • [67] Hawes D.W., Feldman D., Banu D.: Latent heat storage in building materials. Energ. Buildings 20(1993), 77–86.
  • [68] Oliver A.: Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat. Energ. Buildings 48(2012), 1–7.
  • [69] Athienitis A.K., Liu C., Hawes D., Banu D., Feldman D.: Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 32(1997), 405–410.
  • [70] Shilei L., Neng Z., Guohui F.: Impact of phase change wall room on indoor thermal environment in winter. Energ. Buildings 38(2006), 18–24.
  • [71] Ahmad M., Bontemps A., Sallée H., Quenard D.: Experimental investigation and computer simulation of thermal behavior of wallboards containing a phase change material. Energ. Buildings 38(2006), 357–366.
  • [72] Pasupathy A., Athanasius L., Velraj R., Seeniraj R.V.: Experimental investigation and numerical simulation analysis on the thermal performance of a building roof incorporating phase change material (PCM) for thermal management. Appl. Therm. Eng. 28(2008), 556–565.
  • [73] Bhamare D.K., Rathod M.K., Banerjee J.: Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer. J. Build. Eng. 28(2020), 101018.
  • [74] Saffari M., de Gracia A., Ushak S., Cabeza L.F.: Economic impact of integrating PCM as passive system in buildings using Fanger comfort model. Energ. Buildings 112(2016), 159–172.
  • [75] Elarga H., Fantucci S., Serra V., Zecchin R., Benini E.: Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space. Energ. Buildings 150(2017), 546–557.
  • [76] Karim L., Barbeon F., Gegout P., Bontemps A., Royon L.: New phase-change material components for thermal management of the light weight envelope of buildings. Energ. Buildings 68(2014), 703–706.
  • [77] Vik T.A., Madessa H.B., Aslaksrud P., Folkedal E., Øvrevik O.S.: Thermal performance of an office cubicle integrated with a bio-based PCM: experimental analyses. Energy Proced. 111(2017), 609–618.
  • [78] Mehdaoui F., Hazami M., Taghouti H., Noro M., Lazzarin R., Guizani A.: An experimental and a numerical analysis of the dynamic behavior of PCM27 includes inside a vertical enclosure: application in space heating purposes. Int. J. Therm. Sci. 133(2018), 252–265.
  • [79] Royon L., Karim L., Bontemps A.: Optimization of PCM embedded in a floor panel developed for thermal management of the lightweight envelope of buildings. Energ. Buildings 82(2014), 385–390.
  • [80] Linder M.: Using thermochemical reactions in thermal energy storage systems. In: Advances in Thermal Energy Storage Systems (L.F. Cabeza, Ed.). Woodhead, 2015, 357–374.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72dc36a3-514d-4d75-9577-5e408888c005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.