Wpływ właściwości mechanicznych skał otaczających wyrobisko korytarzowe na zjawisko wypiętrzania spągu

Influence of mechanical properties of rocks surrounding a dog heading on floor upheaval

Dr hab. inż. Piotr Matkowski*)

Mgr inż. Łukasz Ostrowski*)

Treść: Zjawisko wypiętrzania spągu jest jedną z głównych przyczyn utraty stateczności oraz funkcjonalności wyrobisk korytarzowych. Jest ono szczególnie uciążliwe przy odstawie urobku przenośnikami zgrzebłowymi i taśmowymi stawianymi na spągu oraz transporcie materiałów kolejkami spągowymi. Dodatkowo zmniejszenie przekroju wyrobiska przez wyciskany spąg jest również ważne z punktu widzenia wentylacji wyrobisk górniczych, m.in. poprzez zwiększenie oporów ruchu na drodze przepływającego powietrza. Badania prowadzone bezpośrednio w chodnikach pokazują, że deformacja spągu może stanowić nawet $80 \div 90 \%$ całkowitej konwergencji pionowej. Przyczynę zjawiska upatruje się, przede wszystkim, w słabych skałach spągowych przy jednoczesnym występowaniu dużych koncentracji naprężeń wokół wyrobiska.Ponieważ prognozowanie zaciskania wyrobisk jest zależne od wielu czynników i nie zawsze daje zadowalające rezultaty, autorzy artykułu przedstawili rozważania dotyczące wielkości wypiętrzania spągu w wyrobiskach korytarzowych w zależności od wytrzymałości i odkształcalności otaczających je skał, w układzie strop - pokład - spąg. W artykule przedstawiono wyniki obliczeń dla wyrobisk drążonych na dwóch głębokościach 700 i 1200 metrów, a więc przy różnych naprężeniach pierwotnych występujących dookoła wyrobiska. Obliczenia wykonano w oparciu o metody numeryczne z wykorzystaniem programu Phase.

Abstract: The phenomenon of floor upheaval is one of the main causes of losing stability and functionality of the dog heading. It is particularly arduous during output haulage with scraper and belt conveyors placed on the floor as well as by transporting materials with floor railway. Additionally, the reduction of excavation section due to floor heave is also important from the point of view of ventilation, for instance due to increased resistance to motion against airflow. Tests performed directly in headings show that the floor deformation may be over $80-90 \%$ of the total vertical convergence. The cause of this lies mainly in the weakness of bottom rocks with the simultaneous occurrence of high stress concentration around the excavation. Since forecasting of excavation tightening depends on many factors and is sometimes unsatisfactory, the authors have considered the issue of floor upheaval in dog headings in the field of strength and deformation of the surrounding rocks in the roof-bed--floor arrangement. This paper presents the results of calculations for excavations driven at the depth of 700 and 1200 meters which is by different primary stresses around the excavation. The calculations were performed on the basis of numerical methods by the use of Phase 2 program.

Stowa kluczowe:

wypiętrzanie spagu, wyrobiska korytarzowe, obliczenia numeryczne, własności mechaniczne skat

Key words:

floor upheaval, dog headings, numerical calculations, mechanical properties of rocks

1. Wprowadzenie

Zjawisko wypiętrzania spągu jest jedną z głównych przyczyn utraty stateczności oraz funkcjonalności wyrobisk korytarzowych. Badania prowadzone bezpośrednio w chodnikach pokazują, że deformacja spągu może stanowić nawet

[^0]$80 \div 90 \%$ całkowitej konwergencji pionowej [5, 16, 17, 20]. Choć badania kopalniane dotyczą przede wszystkim wyrobisk przyścianowych w kopalniach węgla, podobne rezultaty otrzymuje się podczas badań wyrobisk kamiennych [22] lub znajdujących się poza wpływem eksploatacji [2]. W tym przypadku jednak udział wypiętrzania spągu w całkowitej deformacji pionowej wyrobiska jest mniejszy.

Z prac Kidybińskiego [6], Kłeczka [7] i Majcherczyka [9] wynika, że głównymi czynnikami wpływajacymi na wartość wypiętrzenia spągu jest głębokość zalegania wyrobiska lub też znaczna lokalna koncentracja naprężeń w skałach otaczających wyrobisko oraz parametry wytrzymałościowe skał je otaczających. Przyczynę zjawiska najczęściej upatruje się zatem w słabych skałach spągowych [22], przy jednoczesnym występowaniu dużych ciśnień górotworu, na przykład ze strony przesuwającego się frontu ścianowego.

Zjawisko wypiętrzania spągu wyrobisk korytarzowych jest szczególnie uciążliwe przy odstawie urobku przenośnikami zgrzebłowymi i taśmowymi stawianymi na spągu oraz transporcie materiałów kolejkami spagowymi. Dodatkowo zmniejszenie przekroju wyrobiska przez wyciskany spąg jest również ważne z punktu widzenia wentylacji wyrobisk górniczych, m.in. poprzez zwiększenie oporów ruchu na drodze przepływającego powietrza. Zbyt duże deformacje spągu powodują konieczność jego pobierania, lub też skutkują wzmocnieniem obudowy lub nawet całkowitą przebudową wyrobisk. Wypiętrzenie spągu jest zatem ważnym zagadnieniem zarówno pod względem stateczności wyrobisk górniczych, jak również transportu, odstawy i wentylacji.

Ponieważ prognozowanie zaciskania wyrobisk jest zależne od wielu czynników i nie zawsze daje zadowalające rezultaty $[18,19]$, autorzy artykułu przedstawili rozważania dotyczące wielkości wypiętrzania spągu w wyrobiskach korytarzowych w zależności od właściwości mechanicznych otaczających je skał, w układzie strop - pokład - spąg. Takie podejście do zagadnienia daje pewien charakterystyczny obraz zachowania się górotworu w otoczeniu skał mocnych i słabych, pod względem ich wytrzymałości i odkształcalności. W artykule przedstawiono wyniki obliczeń dla wyrobisk drążonych na dwóch głębokościach, tj. 700 i 1200 metrów, różnicując tym samym naprężenia pierwotne występujące dookoła wyrobiska. Obliczenia wykonano za pomoca programu Phase ${ }^{2}$, opartego na metodzie elementów skończonych.

2. Mechanizm wypiętrzania spągów oraz czynniki sprzyjające wypiętrzaniu

2.1. Czynniki geomechaniczne wplywające na deformacje skal w otoczeniu wyrobiska

Ocena stateczności wyrobisk korytarzowych jest problemem złożonym i wymaga uwzględnienia wielu czynników górniczych, technicznych i naturalnych [2, 10]. Analizując właściwości geomechaniczne skał otaczających wyrobisko można stwierdzić, że o zjawisku zaciskania chodników, w tym wypiętrzania spągów w pierwszej kolejności decydują czynniki naturalne, w tym właściwości geomechaniczne skał [12]. Siedem najważniejszych, zdaniem ekspertów, parametrów geomechanicznych skał decydujących o stanie naprężenia i odkształcenia wokół wyrobiska przedstawiono na rysunku 1 [12].

Jak można zauważyć, istotna z punktu widzenia stateczności jest nie tylko wytrzymałość na ściskanie skał stropowych, ale również ociosowych i spągowych. Odkształcalność skał opisywana modułem Younga zwykle koreluje się z wytrzymałością na ściskanie [1,15] i jest to podstawowa wielkość, od której zależy możliwa ciągła deformacja skał otaczających wyrobisko. Zdolność górotworu do odkształceń zmienia głównie albo jego zawodnienie albo uwarstwienie. Goszcz [4] twierdzi wręcz, że nie uwzględnianie wpływu wody przy rozwiązywaniu problemów z geomechaniki jest niedopuszczalne i może prowadzić do zupełnie błędnych wniosków. Badania prowadzone w Katedrze Geomechaniki, Budownictwa

Rys. 1. Właściwości geomechaniczne skal wpływające na deformacje wyrobisk korytarzowych [12]
Fig. 1. Geomechanical properties of rocks affecting dog heading deformations [12]
i Geotechniki AGH w Krakowie pokazują, że spadek średniej wytrzymałości na jednoosiowe ściskanie na skutek działania wody w stosunku do jej wartości w stanie powietrzno-suchym dla warstw otaczających pokłady łaziskie wynosi około 30 \% dla piaskowców i około 81% dla iłowców [13].

Na podstawie badań [13] stwierdzono również, że pomimo dużego spadku wytrzymałości i sztywności skały na skutek działania wody, średni ciężar objętościowy piaskowców nasyconych wodą jest niewiele większy od skały suchej, zwiększając się o $1,17 \%$. Potwierdzają to wyniki badań zmian gęstości piaskowców i mułowców przedstawione w pracach Li [8] oraz Ergulera i Ulusaya [3]. Podobnie wygląda analiza zmian ciężaru objętościowego iłowca na wskutek działania wody, który wzrasta o $1,74 \%$ [13]. W obliczeniach stateczności wyrobisk wpływ wody na ciężar objętościowy skał można zatem pominąć.

Zmiana gęstości skały zależy natomiast od jej uwarstwienia, związanego często z cechami facjalnymi. Dla masywnych próbek zwiększenie gęstości objętościowej na skutek nasycenia wodą nie przekracza zwykle $1,5 \%$ wynosząc średnio $1,08 \%$, gdy dla skał z wyraźnym uwarstwieniem zmiana ta wynosi nawet 5,1 \% (średnio 3,11 \%), a więc trzykrotnie więcej niż w pierwszym przypadku [23]. Uwarstwienie wpływa także na łatwiejszy proces niszczenia skał w otoczeniu wyrobiska, nawet wówczas, gdy mają one stosunkowo dużą wytrzymałość. Zasięg stref zniszczenia wokół wyrobiska w przypadku górotworu uwarstwionego jest znacznie większy niż w przypadku górotworu jednorodnego [12]. Na uwarstwienie górotworu pośrednio wskazuje wskaźnik podzielności rdzenia wiertniczego RQD.

Z przedstawionej skrótowej analizy czynników naturalnych wpływających na stateczność wyrobisk górniczych, a w szczególności na możliwość wypiętrzania spạgów wynika, że decydujący wpływ na intensywność zjawiska ma wytrzymałość skał otaczających oraz ich odkształcalność. Oba te parametry dla danej skały mogą się zmieniać na skutek działania wody oraz na skutek nadmiernego uwarstwienia skał.

2.2. Mechanizm wypiętrzania spągów i znaczenie czynników górniczo-technicznych

Przed wykonaniem wyrobiska w górotworze panuje pierwotny stan naprężeń, który kształtowany jest przez przepływy wód podziemnych, przepływy ciepła i zjawiska geodynamiczne. Ruch mas skalnych następuje zatem cały czas, ale jest on bardzo powolny. W wyniku wykonania wyrobiska pierwotny stan naprężenia w jego otoczeniu ulega istotnym zmianom. Na ociosach wyrobiska występuje wówczas dwuosiowy stan naprężenia, co jest powodem odkształcania się górotworu w kierunku wolnej przestrzeni. Odsłonięty strop, wspierając się na ociosach, wywiera na niego dodatkowy nacisk. Im
szersze jest wyrobisko, tym większe będą działać siły na jego ociosy, ponieważ większe masy skalne będą dążyć do przemieszczania się w kierunku pustej przestrzeni wyrobiska (rys. 2). W związku z tym w ociosach wyrobiska powstają koncentracje naprężeń ściskających, natomiast w spągu i stropie chodnika powstają strefy rozciągania [6]. Naprężenia poziome również ulegają zmianom, a w partiach przyociosowych ich wielkość maleje do zera.

Rys. 2. Schemat naruszenia spaggu wyrobiska korytarzowego wskutek wzmożonej koncentracji naprężeń w ociosach [6]
Fig. 2. Scheme of dog heading floor disturbance as the result of intensified stress concentration in side walls [6]

Równowaga skał otaczających wyrobisko korytarzowe zależy od stanu ich wytężenia. Na stan ten składają się wartości naprężeń wynikających z sumy naprężeń pierwotnych i koncentracji naprężeń związanych z wykonaniem wyrobiska. W takich warunkach w zależności od rodzaju i właściwości skał otaczających wyrobisko korytarzowe może zachodzić
wyciskanie spękanych warstw skalnych w postaci płyt lub bloków do wyrobiska (skały o dużej wytrzymałości), a także jako ciągłe plastyczne przemieszczanie się warstw spągowych (słabe rozmakające warstwy skał). Proces ten może być symetryczny lub asymetryczny, w zależności od kierunku działania naprężeń głównych i proporcji pomiędzy naprężeniami poziomymi a pionowymi. Gdy skały budujące ociosy wyrobiska charakteryzują się mniejszą wytrzymałością niż warstwy pozostałe, oprócz zjawiska wyciskania spągu dochodzi do zaciskania obudowy i zmniejszenia wymiarów wyrobiska [21]. Typy wypiętrzania spągów opisane w pracy Smołki [21] przedstawiono na rysunku 3.

Z przedstawionych na rysunku 3 typów wypiętrzania wynika, że przy ocenie możliwości występowania zjawiska wyciskania spągu należy również uwzględnić takie czynniki, jak kształt wyrobiska i jego wymiary oraz rodzaj stosowanej obudowy [6]. Łukowy lub trapezowy kształt przekroju poprzecznego wyrobiska, przy obudowie składajaceej się z odrzwi otwartych powoduje, że najszersza odsłonięta powierzchnia jakim jest spąg nie jest obudowana, co sprzyja odprężeniu właśnie warstw spągowych [6]. Najczęściej jednak czynnikiem decydującym o wielkości omawianego zjawiska jest dodatkowa koncentracja naprężeń związana z bezpośrednim sąsiedztwem stref ciśnienia eksploatacyjnego [19]. W praktyce więc, intensywne wypiętrzanie spągu obserwuje się w chodnikach przyścianowych bezpośrednio przed frontem eksploatacji, a następnie zjawisko to nasila się w strefie intensywnych ruchów górotworu za frontem ściany nawet wzmacnianych pasami ochronnymi [17]. Należy jednak zauważyć, że wielkość deformacji spągu jest zdecydowanie różna, nawet w skałach o podobnej wytrzymałości i odkształcalności.

Na rysunku 4 pokazano wypiętrzenie spągu w jednej z kopalń GZW powstałe na skutek nadmiernych obciążeń dynamicznych i kruchego niszczenia warstw, natomiast na rysunku 5 przedstawiono wypiętrzenie spągu za frontem ściany, pomimo zabudowania wzdłuż linii zrobów pasa podporowego.

Rys. 3. Typy wypiętrzania spągów [21]
Fig. 3. Types of floor upheaval [21]

Rys. 4. Wypiętrzenie spągu powstale wskutek nadmiernych obciążeń dynamicznych i kruchego lamania się warstw
Fig. 4. Floor upheaval as the result of dynamic overloads and brittle fracturing of layers

3. Obliczenia numeryczne

3.1. Metodyka obliczeń

W celu uzyskania wartości wypiętrzenia spągu w wyrobiskach korytarzowych wykonano obliczenia numeryczne za pomocą programu Phase ${ }^{2}$, opartym na metodzie elementów skończonych. Wykonano je dla płaskiego stanu odkształcenia. Wypiętrzenie spągu utożsamiono z przemieszczeniem całkowitym warstw spągowych. Przyjęty do obliczeń model obejmował wyrobisko korytarzowe o wymiarach odpowiadających jednej z powszechnie obecnie stosowanej obudowy ŁP-10/V32 (szerokość 5,5 m, wysokość 3,8 m).

Przyjęto, że w stropie bezpośrednim wyrobiska występują warstwy skalne o wytrzymałości na jednoosiowe ściskanie $R_{\text {Cstb }}=20 \div 80 \mathrm{MPa}$ oraz miąższości wynoszącej około 1,5 -krotnej wysokości wyrobiska korytarzowego. Strop zasadniczy tworzy gruba ława piaskowca o wytrzymałości $R_{\text {Cstb }}=80 \mathrm{MPa}$. Założono, że ocios wyrobiska stanowi warstwa węgla. Węgiel ten posiada miąższość równą wysokości wyrobiska, a jego wytrzymałość na jednoosiowe ściskanie zawiera się w granicach $R_{\text {Coc }}=10 \div 35 \mathrm{MPa}$. Założono ponadto, że spąg bezpośredni tworzą warstwy skalne o wytrzymałości $R_{C s p b}=$ $15 \div 60 \mathrm{MPa}$ oraz ponownie o miąższości wynoszącej około 1,5-krotnej wysokości wyrobiska. Spąg zasadniczy tworzą utwory skalne o wytrzymałości $R_{C s p z}=60 \mathrm{MPa}$. Przyjęte wartości wytrzymałości na ściskanie skał stropu i spągu zasadniczego oraz zakres wytrzymałości stropu bezpośredniego opisują górotwór karboński typowy dla kopalń węgla Górnośląskiego Zagłębia Węglowego.

Obliczenia wykonywano przy zmianie wytrzymałości na jednoosiowe ściskanie stropu bezpośredniego co 10 MPa , a ociosu węglowego oraz spągu bezpośredniego co 5 MPa w zależności od wariantu obliczeniowego. Taki sposób postępowania pozwolił na pokazanie jak zmienia się wielkość wypiętrzenia spągu przy różnym układzie wytrzymałościo-wo-odkształceniowym strop-pokład-spag, tzn. np. mocny strop - mocny węgiel w ociosie - słaby spạg itd., oraz jakie zmiany ilościowe mogą nastąpić w przyjętych zakresach wytrzymałości skał.

Obliczenia przeprowadzono dla dwóch głębokości 700 m i 1200 m . Pierwsza z podanych głębokości wynika ze

Rys. 5. Wypiętrzenie spągu za frontem ściany, przy zabudowanym pasie podporowym
Fig. 5. Floor upheaval behind the longwall face with the support belt built over
średniej głębokości eksploatacji w obszarze GZW. Druga wynika z głębokości, na której lokalnie prowadzona już jest eksploatacja, jak i z rozpoczęcia przez kopalnie grupy JSW drążenia wyrobisk udostępniających na głębokości większej niż 1200 metrów. Jednym z podstawowych problemów w tych warunkach jest właśnie wypiętrzanie spągu. W obliczeniach przyjęto geostatyczny stan naprężeń.

3.2. Parametry modeli

Ponieważ zachowanie się górotworu w obrębie wyrobiska zależy przede wszystkim od właściwości mechanicznych skał, dla przyjętych parametrów wytrzymałościowych skał określono odpowiednie wartości modułu Younga (sprężystości liniowej). W celu jego wyznaczenia posłużono się korelacją łącząca wartość modułu Younga z wytrzymałością na jednoosiowe ściskanie, zaproponowaną przez Palmstroma i Singha (Palmstrom 2001). Moduł Younga E_{i} wyznacza się jako iloczyn stałej MR (Modulus Ratio), określonej dla danego rodzaju skały, oraz jej wytrzymałości na jednoosiowe ściskanie $R_{c i}$

$$
\begin{equation*}
E_{i}=\mathrm{MR} \cdot E_{c i} \tag{1}
\end{equation*}
$$

Dla warunków geologicznych i rodzajów skał zalegających w rejonie Górnośląskiego Zagłębia Węglowego w artykule dla stropu przyjęto współczynnik MR $=250$ (dla $R_{\backslash c i}=20$ przyjęto $\mathrm{MR}=200$, a dla spągu przyjęto $\mathrm{MR}=210$. Są to wartości oszacowane na podstawie badań własnych oraz badań Marinosa i Tsambiaosa dla skał osadowych [14].

Dla uproszczenia modelu wszystkie warstwy stropowe i spaggowe miały ten sam ciężar objętościowy równy $26 \mathrm{kN} /$ $\mathrm{m}^{3} \mathrm{i}$ tą sama wartość współczynnika Poissona-0,26. Ciężar objętościowy i współczynnik Poissona dla węgla zalegającego w ociosie wynosiły kolejno $14 \mathrm{kN} / \mathrm{m}^{3}$ i 0,3 .

Jako kryterium zniszczenia wybrano kryterium HoekaBrowna, a potrzebne parametry empiryczne m_{b} i s wyznaczono przyjmując odpowiedni dla górotworu wskaźnik RMR (Rock Mass Rating). Przy jego doborze korzystano z własnych doświadczeń badawczych dla skał rejonu GZW [11]. Przyjęto także, że warstwy zachowują się sprężysto-plastycznie ze wzmocnieniem. Parametry geomechaniczne wykorzystane w modelach numerycznych zostały przedstawione w tablicach $1 \div 4$.

Tablica 1. Parametry geomechaniczne skał stropowych i spągu zasadniczego wyrobiska
Table 1. Geomechanical parameters of cap rock and the fundamental floor of excavation

Parametr	Symbol	Strop zasadniczy	Spąg zasadniczy
Wytrzymałość na jednoosiowe ściskanie	R_{c}, MPa	80	60
Wskaźnik jakości górotworu	RMR	75	57
Moduł Younga	E, GPa	20	12,6
Parametry kryterium zniszczenia Hoeka -	m_{b}	2,866	1,507
Browna	s	0,0322	0,0084

Tablica 2. Parametry geomechaniczne skal stropu bezpośredniego wyrobiska korytarzowego
Table 2. Geomechanical parameters of direct cap rock of the dog heading

Parametr	Symbol	Strop 1	Strop 2	Strop 3	Strop 4	Strop 5	Strop 6	Strop 7
Wytrzymałość na jednoosiowe	R_{c}, MPa	20	30	40	50	60	70	80
ściskanie	RMR	33	40	47	54	61	68	75
Wskaźnik jakości górotworu	E, GPa	4	7,5	10	12,5	15	17,5	20
Moduł Younga	m_{b}	0,640	0,821	1,054	1,354	1,739	2,232	2,866
Parametry kryterium zniszczenia	s	0,0006	0,0013	0,0028	0,006	0,0131	0,0286	0,0322
Hoeka - Browna								

Tablica 3. Parametry geomechaniczne skał spągu bezpośredniego wyrobiska korytarzowego
Table 3. Geomechanical parameters of direct bottom rocks of the dog heading

Parametr	Symbol	Spąg 1	Spąg 2	Spąg 3	Spąg 4	$\begin{gathered} \text { Spagg } \\ 5 \end{gathered}$	$\begin{gathered} \text { Spagg } \\ 6 \end{gathered}$	Spąg 7	Spąg 8	$\begin{gathered} \text { Spagg } \\ 9 \\ \hline \end{gathered}$	Spąg 10
Wytrzym. na jednoos. ściskanie	R_{c}, MPa	15	20	25	30	35	40	45	50	55	60
Wskaźnik jakości górotworu	RMR	30	33	36	39	42	45	48	51	54	57
Moduł Younga	E, GPa	3,15	4,2	5,25	6,3	7,35	8,4	9,45	10,5	11,55	12,6
Parametry kryterium	m_{b}	0,575	0,64	0,712	0,792	0,882	0,982	1,093	1,216	1,354	1,507
$\begin{gathered} \text { zniszczenia } \\ \mathrm{H}-\mathrm{B} \end{gathered}$	s	0,0004	0,0006	0,0008	0,0011	0,0016	0,0022	0,0031	0,0043	0,006	0,0084

Tablica 4. Parametry geomechaniczne skal ociosowych wyrobiska korytarzowego
Table 4. Geomechanical parameters of side wall rocks of the dog heading

Parametr	Symbol	Ocios 1	Ocios 2	Ocios 3	Ocios 4	Ocios 5	Ocios6
Wytrzymałość na jednoosiowe	R_{c}, MPa	10	15	20	25	30	35
ściskanie							
Wskaźnik jakości górotworu	RMR	25	27	29	31	33	35
Moduł Younga	E, GPa	1,2	1,24	1,28	1,32	1,36	1,4
Parametry kryterium zniszczenia	m_{b}	1,03	1,106	1,188	1,276	1,371	1,472
Hoeka - Browna	s	0,0002	0,0003	0,0004	0,0005	0,0006	0,0007

Na rysunku 6 przedstawiono przykładowy model dyskretny tarczy z wyrobiskiem korytarzowym. Warstwy skalne stanowiące strop bezpośredni wyrobiska zaznaczono na rysunku kolorem pomarańczowym, strop zasadniczy - żółtym, spąg bezpośredni - szarym, a spąg zasadniczy - brązowym. Model górotworu miał wymiary około 60 na 60 metrów i składał się z około 10000 elementów oraz 20000 węzłów. Łącznie przeanalizowano 840 wariantów, w których dla każdej wartości wytrzymałości stropu bezpośredniego zmieniano w całym badanym zakresie wytrzymałość skał ociosowych i spągowych.

3.3. Wyniki przeprowadzonych obliczeń wypiętrzania spągu iich analiza

3.3.1. Głębokość zalegania 700 m

Na podstawie otrzymanych wyników wypiętrzenia spągu w wyrobiskach korytarzowych w zależności od wytrzymałości
skał stropowych, ociosowych i spągowych sporządzono tabele oraz wykresy charakteryzujące dane zjawisko w zależności od wytrzymałości skał. Na rysunku 7 przedstawiono wyniki obliczeń w postaci przemieszczeń całkowitych górotworu wokół wyrobiska, gdy strop bezpośredni tworzą skały słabe, o wytrzymałości $R_{C}=20 \mathrm{MPa}$, niezdolne do przenoszenia dużych naprężeń. Jego ociosy stanowią skały o wytrzymałości na ściskanie $R_{\text {Coc }}=10 \mathrm{MPa}$, a wytrzymałość skał spągowych zmienia się w zakresie $R_{\text {Cst }}=15 \div 60 \mathrm{MPa}$. Z analizy uzyskanych map przemieszczeń można wnioskować, że zwiększanie wytrzymałości i sztywności spągu (zmiana modułu Younga) przy słabych skałach stropowych i ociosowych prowadzi do ciągłego spadku wypiętrzania spągu, bowiem deformacje zachodzą wówczas niemal w całości w odkształcalnych warstwach powyżej niego.

W tablicy 5 zestawiono wyniki dla całego cyklu obliczeniowego. Na ich podstawie można stwierdzić, że przemieszczenia najsłabszego spągu ($R_{C s p}=15 \mathrm{MPa}$) są praktycznie 26-krotnie

Rys. 6. Przykładowa tarcza modelu numerycznego
Fig. 6. Example of the numerical model plate
większe niż w przypadku spągu o najwyższych parametrach wytrzymałościowych ($\left.R_{C s p}=60 \mathrm{MPa}\right)$. Wraz ze wzrostem wytrzymałości ociosów skały te mogą jednak przenosić coraz większe naprężenia co jednocześnie powoduje spadek wypiętrzania spągu. Jest on jednak nieznaczny i w zakresie wytrzymałości skał spągowych od 15 do 60 MPa zmienia się tylko o około 10%. Maksymalne przemieszczenia spągu w poddanym analizie wyrobisku występują w przypadku,
gdy w ociosach wyrobiska znajdują się skały o słabych parametrach i dla przyjętych założeń modelowych ich grubość wynosi około 55 cm .

Na podstawie otrzymanych wyników sporządzono wykresy zmian wartości przemieszczenia całkowitego spągu w zależności od jego wytrzymałości na jednoosiowe ściskanie (rys. 8). Na wykresach tych pokazano również przemieszczenie stropu oraz ociosów w zależności od wytrzymałości skał

Rys. 7. Przemieszczenia calkowite wokól wyrobisk korytarzowych, przy wytrzymalości na ściskanie skal stropowych 30 MPa , ociosowych 10 MPa i spągowych: a) 15 MPa , b) 25 MPa, c) 35 MPa , d) 45 MPa i e) 55MPa
Fig. 7. Total displacement around dog headings at compression strength of cap rock 30 MPa , side wall rocks 10 MPa and bottom rocks: a) 15 MPa , b) 25 MPa , c) 35 MPa , d) 45 MPa and e) 55 MPa
spągowych. Dla zamieszczonych na wykresie maksymalnych wartości przemieszczeń spągu wyznaczono wzory empiryczne opisujące przemieszczenie całkowite spągu w funkcji jego wytrzymałości na ściskanie (y - przemieszczenie całkowite spągu, x - wytrzymałość skał spągowych na jednoosiowe ściskanie). Aproksymując otrzymane wartości wypiętrzenia spągu funkcją wykładniczą otrzymano około 99 \% zgodność otrzymanych wyników ze zbiorem wartości danej funkcji. Dla funkcji logarytmicznej otrzymano 90 \% zgodność, a dla funkcji potęgowej wynosiła ona 97%. W związku z czym dla aproksymacji wielkości wypiętrzania spągu zdecydowano się wykorzystać funkcję wykładniczą.

Na podstawie otrzymanych zależności przemieszczenia całkowitego spągu od jego wytrzymałości wyznaczono ogólne wzory pozwalające obliczyć przemieszczenie spągu wyrobisk korytarzowych zalegających na głębokości 700 m , gdzie strop bezpośredni tworzą skały o wytrzymałości $R_{\text {Cst }}=20 \mathrm{MPa}$, ze względu na wytrzymałość samego spągu

$$
\begin{equation*}
u=1,3184 e^{-0,0727 R_{C, p}} \tag{2}
\end{equation*}
$$

gdzie:
u - przemieszczenie całkowite spągu, m,
$R_{C s p}-$ wytrzymałość spągu na jednoosiowe ściskanie, MPa.

Tablica 5. Przemieszczenie spągu u, m w zależności od wytrzymalości skal ociosowych $\boldsymbol{R}_{C o c} \mathrm{i}$ spaggowych $\boldsymbol{R}_{C \text { sp }}$, gdy strop bezpośredni tworzą skaly o wytrzymalości $R_{C s t}=20 \mathrm{MPa}$. Wartości $\boldsymbol{R}_{C o c} \mathbf{i} \boldsymbol{R}_{C_{s p}}$ podano w MPa
Table 5. Floor displacement [m] depending on the strength of side wall rocks $\boldsymbol{R}_{C o c}$ and bottom rocks $\boldsymbol{R}_{C s p}$ where the direct roof is made of rocks of strength $\boldsymbol{R}_{C_{s t}}=\mathbf{2 0} \mathrm{MPa}$. Values $\boldsymbol{R}_{C o c}$ and $\boldsymbol{R}_{\text {Csp }}$ are presented in $\mathbf{M P a}$

$R_{C o c}$	$R_{C s p}$	15	20	25	30	35	40	45	50	55
10	0,545	0,320	0,220	0,150	0,100	0,072	0,045	0,034	0,025	0,021
15	0,530	0,312	0,218	0,148	0,099	0,071	0,043	0,033	0,025	0,021
20	0,520	0,300	0,215	0,145	0,098	0,070	0,043	0,032	0,025	0,021
25	0,515	0,298	0,213	0,143	0,098	0,070	0,042	0,032	0,024	0,020
30	0,495	0,295	0,210	0,140	0,095	0,070	0,041	0,031	0,024	0,020
35	0,485	0,280	0,205	0,138	0,095	0,068	0,042	0,030	0,024	0,020

Rys. 8. Wykres zmiany wartości przemieszczenia calkowitego spągu w zależności od jego wytrzymalości gdy wytrzymalość stropu bezpośredniego $R_{c_{s t}}=20 \mathrm{MPa}$, a wytrzymalość ociosów: a) $R_{C o c}=\mathbf{1 0}$ $\mathrm{MPa}, \mathrm{b}) R_{C o c}=15 \mathrm{MPa}$, c) $R_{C o c}$ $=20 \mathrm{MPa}, \mathrm{d}) R_{C o c}=\mathbf{2 5} \mathrm{MPa}$, e) $R_{C o c}=30 \mathrm{MPa}, \mathrm{MPa}$, f) $R_{\text {Coc }}$ $=35 \mathrm{MPa}$
Fig. 8. Diagram of the total displacement value change of floor depending on its strength where the strength of the direct roof is $R_{C s t}=20 \mathrm{MPa}$ and the strength of side walls:
a) $R_{C o c}=10 \mathrm{MPa}$, b) $R_{C o c}=15$ $\left.\mathrm{MPa}, \mathrm{c}) \boldsymbol{R}_{C o c}=\mathbf{2 0} \mathrm{MPa}, \mathrm{d}\right) \boldsymbol{R}_{C o c}$ $=\mathbf{2 5} \mathrm{MPa}$, e) $\boldsymbol{R}_{C o c}=\mathbf{3 0} \mathrm{MPa}$, $\mathrm{MPa}, \mathrm{f}) \boldsymbol{R}_{\text {Coc }}=\mathbf{3 5} \mathrm{MPa}$

d)

W tablicy 6 zestawiono przemieszczenie całkowite spagu w zależności od wytrzymałości na jednoosiowe ściskanie skał ociosowych $\left(R_{C o c}\right)$ i spągowych $\left(R_{C s p}\right)$, gdy strop bezpośredni
tworzą skały o wytrzymałości $R_{\text {Cst. }}=30 \div 80 \mathrm{MPa}$. Wartość R^{2} oznacza współczynnik determinacji dla zgodności obu korelowanych wielkości.

Tablica 6. Przemieszczenie całkowite spągu u, $\mathbf{m} \mathbf{w}$ zależności od wytrzymalości skal ociosowych $R_{C o c}$, spagowych $R_{C s p}$, i stropowych $R_{C s t}$ dla wyrobiska zalegającego na głębokości 700 m . Wartości $R_{C o c} \mathbf{i} R_{C s p}$ podano w MPa
Table 6. Total Floor displacement u, \mathbf{m} depending on the strength of side wall rocks $R_{C o c}$, bottom rocks $R_{C s p}$ and cap rock $R_{C s t}$ for excavation deposited at the depth of 700 m . Values $R_{C s t}$ and $R_{C s p}$ are presented in MPa

Strop bezpośredni $R_{\text {Cst }}=30 \mathrm{MPa}$											u, m
$R_{C o c} R_{C s p}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 1,1597 e^{-0,0725 R_{\text {cip }}} \\ \mathrm{R}^{2}=0,991 \end{gathered}$
10	0,47	0,28	0,186	0,128	0,091	0,07	0,043	0,032	0,025	0,017	
15	0,45	0,275	0,186	0,127	0,083	0,065	0,043	0,032	0,025	0,016	
20	0,440	0,275	0,185	0,126	0,082	0,060	0,041	0,031	0,024	0,016	
25	0,435	0,270	0,185	0,127	0,090	0,065	0,041	0,031	0,024	0,015	
30	0,430	0,270	0,181	0,127	0,086	0,063	0,04	0,03	0,023	0,015	
35	0,425	0,265	0,181	0,124	0,088	0,064	0,04	0,03	0,023	0,015	
Strop bezpośredni $R_{C T}=40 \mathrm{MPa}$											u, m
$R_{C o c} R_{C s p}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 1,0702 e^{-0,0705 R_{\text {cpp }}} \\ R^{2}=0,991 \end{gathered}$
10	0,465	0,275	0,181	0,123	0,081	0,063	0,045	0,032	0,024	0,019	
15	0,445	0,270	0,176	0,123	0,078	0,063	0,043	0,028	0,023	0,018	
20	0,435	0,265	0,176	0,121	0,085	0,061	0,042	0,028	0,024	0,018	
25	0,425	0,260	0,176	0,121	0,093	0,061	0,041	0,028	0,023	0,018	
30	0,415	0,255	0,175	0,118	0,089	0,060	0,040	0,028	0,023	0,017	
35	0,410	0,250	0,174	0,118	0,088	0,060	0,040	0,028	0,024	0,017	
Strop bezpośredni $R_{C+}=50 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c} R_{C s p}$	15	20	25	30	35	40	45	50	55	60	$\begin{aligned} & 1,022 e^{-0,069} R_{\text {cip }} \\ & \mathrm{R}^{2}=0,993 \end{aligned}$
10	0,460	0,275	0,179	0,126	0,085	0,063	0,051	0,034	0,026	0,019	
15	0,435	0,265	0,175	0,121	0,083	0,062	0,049	0,032	0,026	0,018	
20	0,425	0,260	0,174	0,119	0,082	0,060	0,047	0,031	0,025	0,018	
25	0,415	0,255	0,170	0,115	0,083	0,060	0,045	0,028	0,024	0,018	
30	0,410	0,250	0,168	0,113	0,080	0,059	0,043	0,028	0,024	0,017	
35	0,405	0,240	0,166	0,112	0,077	0,058	0,042	0,028	0,024	0,017	
Strop bezpośredni $R_{C T}=60 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c} R_{C s p}$	15	20	25	30	35	40	45	50	55	60	$\begin{aligned} & 1,0343 e^{-0,0712 R_{C p p}} \\ & \mathrm{R}^{2}=0,992 \end{aligned}$
10	0,455	0,270	0,176	0,124	0,081	0,056	0,040	0,030	0,024	0,018	
15	0,430	0,265	0,174	0,122	0,080	0,056	0,040	0,030	0,024	0,018	
20	0,410	0,260	0,172	0,119	0,080	0,056	0,040	0,029	0,023	0,018	
25	0,405	0,250	0,170	0,115	0,082	0,055	0,039	0,029	0,023	0,017	
30	0,400	0,245	0,165	0,110	0,080	0,055	0,038	0,028	0,022	0,017	
35	0,400	0,240	0,163	0,102	0,075	0,051	0,036	0,027	0,019	0,017	
Strop bezpośredni $R_{C T}=70 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c} R_{C s p}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 1,012 e^{-0,0713 R_{\text {cip }}} \\ \mathrm{R}^{2}=0,988 \end{gathered}$
10	0,450	0,270	0,176	0,111	0,080	0,055	0,040	0,030	0,020	0,018	
15	0,430	0,260	0,174	0,110	0,078	0,053	0,040	0,030	0,020	0,018	
20	0,415	0,254	0,172	0,106	0,080	0,052	0,037	0,029	0,020	0,018	
25	0,408	0,249	0,172	0,104	0,080	0,050	0,037	0,029	0,020	0,017	
30	0,405	0,240	0,170	0,102	0,079	0,050	0,038	0,028	0,020	0,017	
35	0,395	0,235	0,166	0,098	0,078	0,048	0,038	0,028	0,020	0,017	
Strop bezpośredni $R_{C T}=80 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c} R_{C s p}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 0,9819 e^{-0,0702 R_{\text {Cpp }}} \\ \mathrm{R}^{2}=0,988 \end{gathered}$
10	0,445	0,270	0,176	0,110	0,080	0,055	0,041	0,030	0,022	0,018	
15	0,425	0,265	0,175	0,110	0,080	0,054	0,039	0,030	0,022	0,018	
20	0,415	0,250	0,172	0,105	0,081	0,053	0,037	0,030	0,022	0,018	
25	0,405	0,240	0,170	0,102	0,081	0,051	0,038	0,029	0,021	0,017	
30	0,400	0,236	0,166	0,100	0,080	0,050	0,038	0,029	0,021	0,017	
35	0,390	0,230	0,165	0,098	0,080	0,048	0,038	0,029	0,021	0,017	

Z uzyskanych zależności przemieszczenia całkowitego spągu wyrobiska korytarzowego od parametrów wytrzymałościowych skał go otaczających wyznaczono ogólne zależności funkcyjne wypiętrzenia spągu od wytrzymałości skał spągowych (3) oraz wypiętrzania spągu od wytrzymałości skał ociosowych i spagowych (4) dla wyrobisk drążonych na głębokości 700 m , w postaci:

$$
\begin{gather*}
u=1,085 e^{-0,0711 R_{C p p}} \\
u=\left(1,409 R_{C o c}^{-0,09}\right) e^{-0,0711 R_{C p}} \tag{3}
\end{gather*}
$$

gdzie:
u - przemieszczenie całkowite spągu, m,
$R_{C s p}$ - wytrzymałość na jedoosiowe ściskanie spągu, MPa,
$R_{\text {Coc }}$-wytrzymałość na jedoosiowe ściskanie ociosu, MPa.

3.3.2. Głębokość zalegania 1200 m

W rozdziale tym, podobnie jak we wcześniejszym, na wstępie szczegółowo omówiono wyniki wypiętrzania spągu dla górotworu o najsłabszych parametrach wytrzymałościowych, gdy strop bezpośredni wyrobiska tworzą skały o wytrzymałości $R_{C}=20 \mathrm{MPa}$. Na rysunku 9 przedstawiono mapy przemieszczeń całkowitych wyrobiska korytarzowego, gdy w ociosach zalegają skały o wytrzymałości na ściskanie $R_{\text {Coc }}=10 \mathrm{MPa}$, a wytrzymałość skał spągowych zmienia się w granicach $R_{\text {Cst }}=15 \div 60 \mathrm{MPa}$. Otrzymane wartości przemieszczeń spągu zachowują tą samą tendencję do zmian swych wartości, co omawiane wcześniej wypiętrzenia spągu
wyrobisk korytarzowych na głębokości 700 m , niemniej różnica w wartościach liczbowych jest znaczna. Wobec mocno odkształcalnych warstw stropowych i ociosowych przy wytrzymałości spągu równej około 45 MPa wypiętrzanie spągu zaczyna praktycznie zanikać. Należy jednak zauważyć, że przy $R_{\text {Csp }}=10 \mathrm{MPa}$ wartość przemieszczenia całkowitego osiąga ponad $1,3 \mathrm{~m}$. Zatem już samo drążenie wyrobisk korytarzowych w słabych skałach na głębokości 1200 m sprawiać będzie duże problemy.

W tablicy 7 przedstawiono wartości wypiętrzenia spągu wyrobiska korytarzowego wydrążonego w górotworze o wytrzymałości skał stropu bezpośredniego $R_{C}=20 \mathrm{MPa}$ oraz zmiennej wytrzymałości skał spągowych i ociosowych. Z obliczeń wynika, że przemieszczenia całkowite najsłabszego spągu $\left(R_{C s}=15 \mathrm{MPa}\right)$ są praktycznie 23-krotnie większe niż w przypadku spągu o najwyższych parametrach wytrzymałościowych ($R_{C s p}=60 \mathrm{MPa}$). Należy zauważyć, że gradient wypiętrzania spągu przy naprężeniach, jakie panują na głębokości 1200 m jest bardzo duży. Zwiększanie wytrzymałości skał spągowych z 15 MPa do 60 MPa powoduje znaczną redukcję wypiętrzania z $1,39 \mathrm{~m}$ do $0,63 \mathrm{~m}$. W praktyce dla wytrzymałości na ściskanie powyżej 40 MPa zmiany te przestają mieć istotne znaczenie.

Wraz ze wzrostem wytrzymałości skał ociosowych spadek wartości wypiętrzania spągu wynosi średnio $6 \div 10 \%$, przy czym najlepiej widoczne jest to dla słabych skał spągowych. Również w tym przypadku zwiększenie wytrzymałości skał ociosowych tylko w nieznacznych stopniu wpływu na konwergencję spągu.

Rys. 9. Przemieszczenia calkowite spągu wyrobisk korytarzowych, przy wytrzymalości na ściskanie skal stropowych 30 MPa , ociosowych 10 MPa i spągowych: a) 15 MPa , b) 25 MPa , c) 35 MPa , d) 45 MPa i e) 55 MPa
Fig. 9. Total displacement of dog headings floor at compression strength of cap rock 30 MPa , side wall rocks 10 MPa and bottom rocks: a) 15 MPa , b) 25 MPa, c) 35 MPa , d) 45 MPa and e) 55 MPa

Tabela 7. Przemieszczenie całkowite spągu $\boldsymbol{u}, \mathbf{m} \mathbf{w}$ zależności od wytrzymałości skal ociosowych $R_{C o c}$ i spągowych $R_{C s p}$, gdy strop bezpośredni tworzą skaly o wytrzymalości $\boldsymbol{R}_{C_{s t}}=\mathbf{3 0} \mathbf{M P a}$. Wartości $R_{C o c} \mathbf{i} R_{C s p}$ podano w MPa
Table 7. Total Floor displacement [\mathbf{m}] depending on the strength of side wall rocks $R_{C o c}$, and bottom rocks $R_{C s p}$, where the direct roof is made of rocks of strength $\boldsymbol{R}_{C s t}=\mathbf{3 0} \mathbf{M P a}$. Values $R_{C o c}$ and $R_{C s p}$ are presented in MPa

$R_{C o c}$	15	20	25	30	35	40	45	50	55	60
10	1,390	0,920	0,635	0,462	0,350	0,246	0,180	0,105	0,070	0,060
15	1,375	0,915	0,630	0,462	0,340	0,241	0,178	0,100	0,070	0,058
20	1,360	0,910	0,630	0,460	0,340	0,240	0,178	0,098	0,068	0,058
25	1,350	0,905	0,624	0,450	0,330	0,225	0,175	0,096	0,065	0,058
30	1,330	0,895	0,620	0,445	0,325	0,223	0,172	0,095	0,065	0,058
35	1,320	0,885	0,612	0,442	0,320	0,220	0,170	0,095	0,065	0,058

Na podstawie otrzymanych wyników wykonano wykresy zmian wartości przemieszczenia całkowitego spągu w zależności od jego wytrzymałości na jednoosiowe ściskanie (rys. 10). Z racji ograniczonego miejsca w artykule zdecydowano się przedstawić wykresy tylko dla dwóch skrajnych przypadków, a więc gdy wytrzymałość skał ociosowych wynosi $R_{C o c}=$ 10 MPa i $R_{C o c}=35 \mathrm{MPa}$. Na wykresach tych pokazano również przemieszczenie całkowite stropu oraz ociosów w tej samej zależności. Wykresy te aproksymowano funkcją wykładniczą, na podstawie której wyznaczono wzory empiryczne opisujące wypiętrzenie spągu w zależności od jego wytrzymałości. Analogicznie funkcja wykładnicza w porównaniu do innych (logarytmicznej, potęgowej itd.) wykazała największy współczynnik determinacji R^{2} dla obu analizowanych wielkości (ponad 99%).

Przemieszczenie spągu wyrobisk korytarzowych, drążonych na głębokości 1200 m , dla stropu bezpośredniego o wytrzymałości $R_{\text {Cst }}=20 \mathrm{MPa}$ można zatem obliczyć ze wzoru

$$
\begin{equation*}
u=3,2731 e^{-0,0718 R_{C p}} \tag{5}
\end{equation*}
$$

gdzie:
$\Delta h_{s p}$-przemieszczenie całkowite spagu, m,
$R_{\text {Csp }}$-wytrzymałość spągu na jednoosiowe ściskanie, Pa.

W tablicy 8 przedstawiono wyniki obliczeń przemieszczenia spągu w zależności od wytrzymałości skał ociosowych $R_{\text {Coc }}$ i spągowych $R_{C s p}$, gdy strop bezpośredni tworzą skały o wytrzymałości $R_{C s t}{ }_{c s p}=30 \div 80 \mathrm{MPa}$. Wyniki pokazuja, że wzrost wytrzymałości skał stropowych w bardzo niewielkim stopniu zmniejsza ruch skał spągowych. Zmiana wytrzymałości stropu o 50 MPa ogranicza zaledwie o 7 cm wypiętrzanie spągu. Większy wpływ ma zwiększenie wytrzymałości i sztywności ociosów, które mogą zmniejszyć deformację spạgu o kilkanaście centymetrów przy zmianie wytrzymałości skał ociosowych o 25 MPa . Należy zauważyć, że nawet dla głębokości 1200 m , gdzie teoretyczne pionowe naprężenie pierwotne powinno wynosić $31,2 \mathrm{MPa}$ wytrzymałość skał spągowych nie mniejsza niż 40 MPa gwarantuje wysoką stateczność spągu i deformacje rzędu kilkunastu centymetrów.

W tablicy 8 wartość R^{2} przy wyznaczonych funkcjach opisujących wypiętrzanie spągu oznacza współczynnik determinacji pomiędzy obiema analizowanymi wielkościami, tj . wytrzymałością na ściskanie warstw spągowych $R_{\text {Csp }} \mathrm{i}$ jego przemieszczeniem u.

Na podstawie wykonanych obliczeń oraz z podanych w tablicy 8 zależności przemieszczenia całkowitego spągu wyrobiska korytarzowego od parametrów wytrzymałościowych skał otaczających wyrobisko wyznaczono zależności empiryczne wypiętrzenia spągu od wytrzymałości skał spągo-

Rys. 10. Wykres zmiany wartości przemieszczenia całkowitego spągu w zależności od jego wytrzymałości przy wytrzymalości stropu bezpośredniego $R_{C s t}=30 \mathrm{MPa}$ i wytrzymalości ociosów: a) $\left.R_{C o c}=10 \mathrm{MPa}, \mathbf{b}\right) R_{C o c}=35 \mathrm{MPa}$
Fig. 10. Diagram of the total displacement value change of floor depending on its strength where the strength of the direct roof is $R_{C s t}=30 \mathrm{MPa}$ and the strength of side walls: a) $R_{C o c}=10 \mathrm{MPa}$, b) $R_{C o c}=35 \mathrm{MPa}$

Tabela 8. Przemieszczenie calkowite spągu $\boldsymbol{u}, \mathbf{m} \mathbf{w}$ zależności od wytrzymalości skal ociosowych $R_{C o c}$ spạgowych $R_{C s p}$, i stropowych $R_{C s \text {, }}$, dla wyrobiska drążonego na głębokości 700 m . Wartości $R_{C o c} \mathbf{i} R_{C s}$ podano w MPa
Table 8. Total floor displacement $\boldsymbol{u}, \mathbf{m}$ depending on the strength of side wall rocks $R_{C o c}$, bottom rocks $R_{C s p}$ and cap rock $R_{C s p}$, for excavation driven at the depth of $\mathbf{7 0 0} \mathrm{m}$. Values $R_{C o c}$ and $R_{C s p}$ are presented in MPa

Strop bezpośredni $R_{\text {Cst }}=30 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 3,2731 e^{-0,0718 R_{C, p}} \\ \mathrm{R}^{2}=0,994 \end{gathered}$
10	1,280	0,820	0,560	0,385	0,280	0,160	0,140	0,085	0,065	0,050	
15	1,230	0,800	0,555	0,375	0,275	0,155	0,135	0,085	0,065	0,050	
20	1,210	0,790	0,550	0,370	0,270	0,155	0,135	0,084	0,070	0,050	
25	1,205	0,775	0,545	0,360	0,260	0,155	0,135	0,084	0,069	0,048	
30	1,190	0,765	0,540	0,355	0,255	0,150	0,130	0,080	0,067	0,045	
35	1,180	0,750	0,530	0,345	0,250	0,145	0,128	0,078	0,065	0,045	
Strop bezpośredni $R_{\text {cst }}=40 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c}$	15	20	25	30	35	40	45	50	55	60	$\begin{aligned} & 3,1617 e^{-0,0715 R_{\text {Cpp }}} \\ & \mathrm{R}^{2}=0,995 \end{aligned}$
10	1,265	0,805	0,535	0,365	0,275	0,178	0,140	0,080	0,065	0,050	
15	1,210	0,790	0,530	0,365	0,270	0,175	0,130	0,078	0,065	0,049	
20	1,165	0,780	0,515	0,360	0,265	0,170	0,125	0,075	0,065	0,049	
25	1,135	0,765	0,505	0,355	0,260	0,165	0,120	0,075	0,065	0,049	
30	1,120	0,750	0,500	0,352	0,258	0,163	0,110	0,074	0,065	0,048	
35	1,115	0,740	0,495	0,348	0,255	0,161	0,115	0,072	0,065	0,048	
Strop bezpośredni $R_{\text {Cst }}=50 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 3,1112 e^{-0,0717 R_{\text {Cip }}} \\ \mathrm{R}^{2}=0,991 \end{gathered}$
10	1,235	0,785	0,530	0,355	0,270	0,175	0,135	0,080	0,065	0,050	
15	1,195	0,778	0,525	0,350	0,260	0,170	0,135	0,078	0,065	0,048	
20	1,125	0,772	0,510	0,347	0,260	0,165	0,130	0,075	0,062	0,048	
25	1,115	0,760	0,495	0,345	0,255	0,164	0,130	0,073	0,062	0,047	
30	1,100	0,750	0,485	0,342	0,250	0,162	0,128	0,071	0,062	0,047	
35	1,085	0,740	0,475	0,340	0,245	0,160	0,125	0,070	0,060	0,045	
Strop bezpośredni $R_{\text {Cst }}=60 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 3,0831 e^{-0,072 R_{C \cdot p}} \\ \mathrm{R}^{2}=0,992 \end{gathered}$
10	1,230	0,770	0,530	0,370	0,270	0,165	0,130	0,080	0,065	0,050	
15	1,185	0,760	0,520	0,365	0,260	0,162	0,125	0,078	0,063	0,049	
20	1,140	0,745	0,500	0,360	0,255	0,158	0,122	0,075	0,062	0,047	
25	1,120	0,738	0,495	0,354	0,250	0,155	0,120	0,075	0,062	0,047	
30	1,110	0,730	0,480	0,348	0,248	0,152	0,120	0,074	0,061	0,045	
35	1,065	0,720	0,470	0,340	0,245	0,148	0,120	0,074	0,061	0,045	
Strop bezpośredni $R_{\text {Cst }}=70 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c}$	15	20	25	30	35	40	45	50	55	60	$\begin{gathered} 3,0382 e^{-0,072 R_{\text {cip }}} \\ \mathrm{R}^{2}=0,989 \end{gathered}$
10	1,220	0,765	0,525	0,350	0,260	0,155	0,115	0,080	0,060	0,048	
15	1,180	0,750	0,515	0,343	0,255	0,150	0,112	0,078	0,060	0,048	
20	1,135	0,738	0,495	0,340	0,255	0,148	0,110	0,078	0,058	0,048	
25	1,110	0,730	0,485	0,335	0,250	0,145	0,110	0,076	0,058	0,047	
30	1,070	0,715	0,475	0,325	0,245	0,138	0,108	0,075	0,055	0,045	
35	1,060	0,705	0,470	0,310	0,240	0,135	0,105	0,075	0,055	0,045	
Strop bezpośredni $R_{\text {Cst }}=80 \mathrm{MPa}$											$u, \mathrm{~m}$
$R_{C o c} R_{C s p}$	15	20	25	30	35	40	45	50	55	60	$\begin{aligned} & 2,9555 e^{-0,0715 R_{C s p}} \\ & \mathrm{R}^{2}=0,992 \end{aligned}$
10	1,210	0,760	0,520	0,345	0,255	0,150	0,110	0,080	0,064	0,048	
15	1,170	0,750	0,515	0,340	0,250	0,148	0,108	0,079	0,064	0,048	
20	1,130	0,735	0,490	0,330	0,250	0,145	0,106	0,079	0,062	0,047	
25	1,090	0,730	0,485	0,324	0,245	0,142	0,105	0,078	0,061	0,046	
30	1,060	0,720	0,478	0,320	0,240	0,140	0,102	0,078	0,061	0,046	
35	1,045	0,705	0,474	0,315	0,237	0,138	0,100	0,075	0,060	0,045	

wych (wzór 6) oraz wypiętrzania spągu od wytrzymałości skał ociosowych i spągowych (wzór 7) dla wyrobisk drążonych na 1200 m głębokości:

$$
\begin{gather*}
u=3,2174 e^{-0,0717 R_{C p p}} \tag{6}\\
u=\left(4,13 R_{C o c}^{-0,091}\right) e^{-0,0717 R_{C p p}} \tag{7}
\end{gather*}
$$

gdzie:
u - wypiętrzenie spạgu, m,
$R_{C s p}$ - wytrzymałość na jedoosiowe ściskanie spągu, MPa,
$R_{C o c}^{\iota_{\rho}}$ - wytrzymałość na jedoosiowe ściskanie ociosu, MPa.

4. Podsumowanie

Jedną z głównych przyczyn utraty stateczności wyrobisk korytarzowych jest wypiętrzanie spągu. W artykule przedstawiono obliczenia numeryczne dla oceny tego zjawiska dla dwóch charakterystycznych głębokości prowadzonych robót górniczych na obszarze GZW: 700 m - średniej głębokości eksploatacji oraz 1200 m - głębokości aktualnie wykonywanych wyrobisk udostępniających, np. w kopalniach JSW. Na podstawie przeprowadzonych obliczeń stwierdzono, że wypiętrzanie spągu uzależnione jest w największym stopniu od parametrów skał otaczających wyrobisko, przede wszystkim słabych skał spągowych. Skały te nie są w stanie przejąć dużych naprężeń, przede wszystkim wynikających z głębokości zalegania wyrobiska oraz dodatkowej koncentracji naprężeń wywołanej jego wykonaniem. Wytrzymałość skał stropowych nie wpływa praktycznie na zniszczenie spągu, natomiast w ograniczonym stopniu redukują go mocne skały ociosowe. Ich duża wytrzymałość i mała odkształcalność powoduje, że nie pozwalają one na przenoszenie zwiększonych naprężén na spąg, co ogranicza wielkość wypiętrzenia spągu o kilkanaście procent. Największa wartość przemieszczenia całkowitego spągu wyrobiska korytarzowego wydrążonego na głębokości 700 metrów przy założonych warunkach modelowych wyniosło $0,54 \mathrm{~m}$, natomiast dla wyrobiska korytarzowego znajdującego się na głębokości $1200 \mathrm{~m} \div 1,39 \mathrm{~m}$, a więc przemieszczenie spągu wzrosło, w porównaniu z głębokością 700 m , o około 250%. Maksymalne wartości wypiętrzenia spągu dla obu głębokości wyznaczono, gdy pakiet skał otaczających wyrobisko tworzyły: skały spągu bezpośredniego o wytrzymałości $R_{C s p}=15 \mathrm{MPa}$, skały ociosowe o wytrzymałości $R_{C o c}=10 \mathrm{MPa}$ i skały stropu bezpośredniego o wytrzymałości $R_{C s t}^{C o c}=20 \mathrm{MPa}$.

W praktyce górniczej dodatkowe znaczenie dla zjawiska wypiętrzania spągu ma zawodnienie skał otaczających wyrobisko, które może powodować bardzo duże spadki parametrów mechanicznych skał, a także wysokie naprężenie poziome, które będzie zwiększać ruch warstw spągowych w kierunku pustej przestrzeni wyrobiska. Wypiętrzanie spągu może być także powodowane przez czynniki górnicze (np. oddziaływanie zrobów, krawędzi eksploatacyjnych) i techniczne (np. rodzaj i typ obudowy, wymiary wyrobiska), które w niniejszym artykule nie były analizowane.

Opracowane formuły określające wartość możliwego przemieszczenia całkowitego spągu w zależności od wytrzymałości skał ociosowych i spągowych otaczających wyrobisko dotyczą górotworu o parametrach mechanicznych charakterystycznych dla Górnośląskiego Zagłębia Węglowego. Zależności funkcyjne wykazały bardzo dobrą zgodność pomiędzy wybranymi wielkościami ($98 \div 99 \%$). Dla najsłabszych spągów jednak ($R_{C s p}=15 \mathrm{MPa}$) wyznaczone wzory zaniżają wartości wypiętrzenia spągu o około 30% dla głębokości 700 metrów oraz około 20 \% dla głębokości 1200 m , niemniej mogą one być pomocnym narzędziem dla orienta-
cyjnego szacowania tego zjawiska w zakresie wytrzymałości skał spągowych od 20 do 60 MPa . Należy zwrócić uwagę, że w wykonanej analizie przyjęto stałą relację pomiędzy wytrzymałością skał na ściskanie R_{c} a ich odkształcalnością (modułem Younga E). Założono także dość idealne warunki geologiczno-górnicze w otoczeniu wyrobiska, tzn. np. brak zaburzeń geologicznych, krawędzi wyżej wybranych pokładów, zawodnienia, czy sąsiedztwa zrobów. Dla dokładnego wyznaczenia wartości wypiętrzenia spągu danego wyrobiska korytarzowego należałoby w obliczeniach uwzględnić wszystkie dodatkowe czynniki naturalne, techniczne i górnicze wpływające na stan naprężenia w górotworze i wykonać badania laboratoryjne właściwości skał.

Literatura

1. Bukowska M. i inni: Kompleksowa metoda oceny skłonności do tąpań górotworu w Górnośląskim Zagłębiu Węglowym. Główny Instytut Górnictwa. Katowice 2009.
2. Chudek M.: Geomechanika z podstawami ochrony środowiska i powierzchni terenu. Wydawnictwo Politechniki Śląskiej, Gliwice 2002.
3. Erguler Z.A., Ulusay R.: Water-induced variations in mechanical properties of clay-bearing rocks. International Journal of Rock Mechanics \& Mining Sciences, no 46, 2009 s. $355 \div 370$.
4. Goszcz A.: Elementy mechaniki skał oraz tąpania w polskich kopalniach węgla i miedzi. Biblioteka Szkoły Eksploatacji Podziemnej, seria z Lampką Górniczą nr 2, IGSMiE PAN, Kraków 1999.
5. Jendryś M.: Wpływ eksploatacji górniczej na nadbierane wyrobiska korytarzowe - część 1. Pomiary i obserwacje. Budownictwo Górnicze i Tunelowe nr 3, 2009, s. $1 \div 11$.
6. Kidybiński A.: Podstawy geotechniki kopalnianej. Wyd. Sląsk, Katowice 1982.
7. Kłeczek Z.: Geomechanika górnicza. Śląskie Wydawnictwo Techniczne, Katowice 1994.
8. Li D., Yuen Wong L.N., Liu G., Zhang X.: Influence of water content and anisotropy on the strength and deformability of low porosity metasedimentary rocks under triaxial compression. Engineering Geology nr 126, 2012, s. $46 \div 66$.
9. Majcherczyk T., Matkowski P., Niedbalski Z.: Ruchy górotworu i reakcje obudowy w procesie niszczenia skał wokół wyrobisk korytarzowych na podstawie badań "in situ". Wyd. AGH, Kraków 2006.
10. Majcherczyk T., Malkowski P., Niedbalski Z.: Ocena schematów obudowy i skuteczności projektowania wyrobisk korytarzowych w kopalniach węgla kamiennego. Wyd. AGH, Kraków 2012.
11. Matkowski P.: Wykorzystanie badań laboratoryjnych i kopalnianych do określenia stałych warunków Hoeka-Browna. Przegląd Górniczy nr 11, 2010, str. 46 $\div 52$.
12. Matkowski P.: Wpływ uwarstwienia górotworu na zasięg stref spękań wokół wyrobisk korytarzowych. Wiadomości Górnicze nr 5, 2014, str. $259 \div 269$.
13. Matkowski P., Ulaszek A., Ostrowski Ł.: Optymalizacja grubości łaty węglowej pozostawionej w stropie wyrobiska ścianowego z uwagi na zawodnienie skał stropowych. Przegląd Górniczy nr 3, 2014, s. 48 $\div 57$.
14. Marinos P.V., Tsambiaos G.: Strength and deformability of specific sedimentary and ophiolitic rocks. Proceedings of the $12^{\text {th }}$ International Congress, Patras, May 2010, Bulletin of Geological Society of Greece, XLIII, no 3, s. 1259 $\div 1266$.
15. Palmström A., Singh R.: The deformation modulus of rock mass comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology, vol. 16, no. 3, 2001, s. 115-131.
16. Piechota S.: Wpływ niektórych czynników na dobór obudowy wyrobisk korytarzowych w kopalni węgla kamiennego „Bogdanka". Przegląd Górniczy nr 12, 2001, s. 25 $\div 29$.
17. Prusek S.: Wielkość deformacji chodnika przyścianowego utrzymywanego za pomocą pasa ochronnego. Przegląd Górniczy nr 7-8, 2003, s. $33 \div 39$.
18. Prusek S.: Wykorzystanie sztucznych sieci neuronowych do prognozowania zaciskania chodników przyścianowych. Wiadomości Górnicze nr 11, 2007, s. 601 $\div 607$.
19. Prusek S.: Metody prognozowania deformacji chodników przyścianowych w strefach wpływu eksploatacji z zawałem stropu. Prace Naukowe Głównego Instytutu Górnictwa, nr 874, Katowice 2008.
20. Prusek S., Majcher M.: Przebieg ruchów górotworu w chodniku przyścianowym z uwagi na wpływ frontów eksploatacji zawałowej. Miesięcznik WUG nr 2, 2003, s. $3 \div 7$.
21. Smołka J.: Analiza i kształtowanie się stanu naprężén wokół wyrobisk chodnikowych dla ograniczenia wypiętrzania spągów. Prace GIG, Komunikat nr 699, Katowice 1978.
22. Stachowicz S., Kosonowski J., Kozek B.: Charakterystyka zaciskania wyrobisk korytarzowych kamiennych w kopalni Bogdanka. Wiadomości Górnicze nr 4, 1995, s. 165 $\div 169$.
23. Török A. Vàsàrhelyi B.: The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Engineering Geology no 115, 2010, s. 237 $\div 245$.

Szanowni Czytelnicy! Przypominamy o wzowieniu prenumeraty „Przegladu Górniczego"

Informujemy też, że od 2009 roku w grudniowym zeszycie P.G. zamieszczamy listę naszych prenumeratorów.

[^0]: *) AGH w Krakowie.

