PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical approaches to the heat transfer problem in modern electronic structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of this paper is to present a detailed description of the research related to the modeling of heat conduction in modern electronic structures, including special consideration for numerical aspects of analyzed algorithms. The motivation to undertake the research as well as some of the most-important results of the experiments and simulations are also included. Moreover, a numerical approximation of the problem as well as the methodology used and a sample solution of the mentioned problem are presented. In the main part, the discretization techniques, Ordinary Differential Equation algorithms, and simulation results for Runge-Kutta’s and Gear’s algorithms are analyzed and discussed. Additionally, a new effective approach to the modeling of heat transfer in electronic nanostructures is demonstrated.
Wydawca
Czasopismo
Rocznik
Strony
71--93
Opis fizyczny
Bibliogr. 17 poz., rys., wykr., tab.
Twórcy
  • Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90--924, Łódź, Poland
autor
  • Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90--924, Łódź, Poland
Bibliografia
  • [1] Antaki P.: Solution for non-Fourier dual phase lag heat conduction in a semiinfinite slab with surface heat flux. International Journal of Heat and Mass Transfer, vol. 41(14), pp. 2253–2258, 1998.
  • [2] Cahill D., Ford W., Goodson K., Mahan G., Majumdar A., Maris H., Merlin R., Phillpot S.: Nanoscale thermal transport. Journal of Applied Physics , vol. 93(2), pp. 793–818, 2003.
  • [3] Chen G.: Ballistic-diffusive equations for transient heat conduction from nano to macroscales. Journal of Heat Transfer , vol. 124(2), pp. 320–328, 2001.
  • [4] Fourier J.: Theorie analytique de la chaleur. Firmin Didot, Paris, 1988.
  • [5] Gutfeld R., Nethercot A.: Heat pulses in quartz and sapphire at low temperatures. Physical Review Letters , vol. 12(23), pp. 641–643, 1964.
  • [6] Hebboul S., Wolfe J.: Lattice dynamics of InSb from phonon imaging. Zeitschrift fur Physik B Condensed Matter , vol. 73(4), pp. 437–466, 1989.
  • [7] Janicki M., Samson A., Raszkowski T., Zubert M., Napieralski A.: Comparison of Green’s function solutions for different heat conduction models in electronic nanostructures. Microelectronics Journal , vol. 46(12A), pp. 1162–1166, 2015.
  • [8] Janicki M., Zubert M., Napieralski A.: Convergence of Green’s function heat equation solutions in electronic nanostructures. Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems , pp. 285–288, 2014.
  • [9] Janicki M., Zubert M., Napieralski A.: Green’s function solution of hyperbolic heat equation suitable for thermal analysis of electronic nanostructures. Proceedings of 20th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC) , pp. 1–4, 2014.
  • [10] Janicki M., Zubert M., Samson A., Raszkowski T., Napieralski A.: Green’s Function Solution for Dual-Phase-Lag Heat Conduction Model in Electric Nanostructures. Proceedings of 31th Annual Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM) , pp. 95–98, 2015.
  • [11] Liu S., Xu X., Xie R., Zhang G., Li B.: Anomalous heat conduction and anomalous diffusion in low dimensional nanoscale systems. The European Physical Journal B , vol. 85(10: 337), 2012.
  • [12] Maudgal V.: Computer-aided thermal analysis. Hybrid Circuit Technology , pp. 19–21, 1991.
  • [13] Mochnacki B., Paruch M.: Cattaneo-Vernotte Equation. Identification of Relaxation Time Using Evolutionary Algorithms. Journal of Applied Mathematics and Computational Mechanics , vol. 12(4), pp. 97–102, 2013.
  • [14] Raszkowski T., Zubert M., Janicki M., Napieralski A.: Numerical solution of 1-D DPL heat transfer equation. Proceedings of the 22nd International Conference Mixed Design of Integrated Circuits and Systems , pp. 436–439, 2015.
  • [15] Tzou D.: A Unified Field Approach for Heat Conduction From Macro- to Micro- Scales. Journal of Heat Transfer , vol. 117(1), pp. 8–16, 1995.
  • [16] Xu M., Wang L.: Dual-phase-lagging heat conduction based on Boltzmann transport equation. International Journal of Heat and Mass Transfer , vol. 48 (25–26), pp. 5616–5624, 2005.
  • [17] Zubert M., Janicki M., Raszkowski T., Samson A., Nowak P., Pomorski K.: The Heat Transport in Nanoelectronic Devices and PDEs Translation into Hardware Description Languages. Bulletin de la Societe des Sciences et des Lettres de Łódź, Serie: Recherches sur les Deformations , vol. 64(3), pp. 69–80, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72d60fdb-738a-454f-af15-b8704a1bc0a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.