PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accuracy analysis of aircraft position at departure phase using dgps method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present the problem of implementation of the Differential Global Positioning System (DGPS) tech-nique in positioning of the aircraft in air navigation. The aircraft coordinates were obtained based on Global Positioning System (GPS) code observations for DGPS method. The DGPS differential corrections were transmitted from reference station REF1 to airborne receiver using Ultra High Frequency (UHF) radio modem. The airborne Thales Mobile Mapper receiver was mounted in the cabin in Cessna 172 aircraft. The research test was conducted around the military aerodrome EPDE in Dęblin in Poland. In paper, the accuracy of aircraft positioning using DGPS technique is better than 1.5 m in geocentric XYZ frame and ellipsoidal BLh frame, respectively. In addition, the obtained accu-racy of aircraft positioning is in agreement with International Civil Aviation Organization (ICAO) Required Navigation Performance (RNP) technical standards for departure phase of aircraft. The presented research method can be utilised in Ground-Based Augmentation System (GBAS) in air transport. In paper, also the accuracy results of DGPS method from flight test in Chełm are presented. The mean values of accuracy amount to ±1÷2 m for horizontal plane and ±4÷5 m for vertical plane.
Słowa kluczowe
Rocznik
Strony
36--43
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Institute of Navigation, Military University of Aviation, Dywizjonu 303 35, 08-521 Dęblin, Poland
  • Institute of Navigation, Military University of Aviation, Dywizjonu 303 35, 08-521 Dęblin, Poland
Bibliografia
  • 1. Ali, Q., Montenegro, S. (2014), A Matlab Implementation of Differential GPS for Low-cost GPS Receivers, TransNav, 8(3), 343-350.
  • 2. Baroni, L., Kuga H. K. (2005), Analysis of navigational algorithms for a real time differential GPS system, 18th International Congress of Mechanical Engineering, November 6-11, 2005, Ouro Preto, Brazil.
  • 3. Ciećko, A., Grunwald, G., Kaźmierczak, R., Grzegorzewski, M., Ćwiklak, J., Oszczak, S., Bakuła M. (2014), Analysis of the accuracy and availability of ASG-EUPOS services in air navigation and transport, Logistyka, 3, 1091-1100. (in Polish)
  • 4. Ciećko, A., Grzegorzewski, M., Oszczak, S., Ćwiklak, J., Grunwald, G., Balint, J., Szabo, S. (2016), Examination of EGNOS Safety-Of-Life service in Eastern Slovakia, Annual of Navigation, 22/2015, 65-67.
  • 5. Eggleston, B., McKinney, W. D., Choi, N. S., Min D. (2002), A low cost flight test instrumentation package for flight airplanes, 23rd Congress of International Council of the Aeronautical Sciences, 8-13 September, 2002, Toronto, Canada, Paper ICAS 2002-5.2.2.
  • 6. Gianniou, M., Groten E. (1996), An advanced real-time algorithm for code and phase DGPS, Paper presented at DSNS’96 Conference, St. Petersburg, Russia, May 20-24.
  • 7. Grzegorzewski, M. (2005), Navigating an aircraft by means of a position potential in three dimensional space, Annual of Navigation, 9, 26-27.
  • 8. Grzegorzewski, M., Ciećko, A., Oszczak, S., Popielarczyk, D. (2008), Autonomous and EGNOS Positioning Accuracy Determination of Cessna Aircraft on the Edge of EGNOS Coverage, Proceedings of the 2008 National Technical Meeting of The Institute of Navigation, San Diego, CA, January 2008, 407-410.
  • 9. Grzegorzewski, M., Jaruszewski, W., Fellner, A., Oszczak, S., Wasilewski, A., Rzepecka, Z., Kapcia, J., Popławski T. (1999), Preliminary results of DGPS/DGLONASS aircraft positioning in flight approaches and landings, Annual of Navigation, 1, 41-53.
  • 10. Hejmanowska, B., Rodolphe, P., Oszczak, S., Ciećko A. (2005), Validation of methods for measurement of land parcel areas, Draft final report, AGH University of Science and Technology.
  • 11. ICAO (2006), “ICAO standards and recommended practices (SARPS), annex 10 volume I (radio navigation aids)”, available at:
  • www.ulc.gov.pl/pl/prawo/prawo-mi%C4%99dzynarodowe/206-konwencje, current version on date: 15 October 2018, (in Polish).
  • 12. Kaźmierczak, R., Grunwald, G., Bakuła, M. (2011), The use of RTCM 2.X Dekoder Software for Analyses of KODGIS and NAWGIS Services of the ASG-EUPOS System, Technical Sciences, 14(2), 229-243.
  • 13. Kim, J., Song, J., No, H., Han, D., Kim, D., Park, B., Kee, C. (2017), Accuracy Improvement of DGPS for Low-Cost Single-Frequency Receiver Using Modified Flächen Korrektur parameter Correction, ISPRS Int. J. Geo-Inf., 6, 222.
  • 14. Krasuski, K. (2017), Application the GPS code observations in BSSD method for recovery the position of the aircraft, Journal of Automation, Mobile Robotics & Inteligent Systems, 11(3), 45-52.
  • 15. Krasuski, K., Ćwiklak, J., Grzesik, N. (2018), Accuracy assessment of aircraft positioning by using the DGLONASS method in GBAS system, Journal of KONBIN, 45, 97-124.
  • 16. Krasuski, K., Wierzbicki, D., Jafernik H. (2018), Utilization PPP method in aircraft positioning in post-processing mode, Aircraft Engineering and Aerospace Technology, 90(1), 202-209.
  • 17. Rodríguez-Bilbao, I., Radicella, S. M., Rodríguez-Caderot, G., Herraiz M. (2015), Precise point positioning performance in the presence of the 28 October 2003 sudden increase in total electron content, Space Weather, 13, 698–708.
  • 18. Sabatini, R., Palmerini, G. B. (2008), Differential Global Positioning System (DGPS) for Flight Testing, ISBN 978-92-837-0041-8, RTO AGARDograph 160 Flight Test Instrumentation Series – Volume 21, Chapter 6 – DGPS PERFORMANCE ANALYSIS.
  • 19. Tajima, H., Asakura, M. (2002), Flight Experiments of DGPS Approaches and Landings on a Megafloat Airport Model, Transactions Of The Japan Society For Aeronautical And Space Sciences, 45 (147), 66-68.
  • 20. Tsai, Y-J. (1999), Wide Area Differential operation of the Global Positioning System: ephemeris and clock algorithms, PhD thesis, Stanford University, 110-112.
  • 21. URL1. (2019), https://www.google.pl/maps/, current on 2019.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72d37455-db2b-41f8-ab4c-ceb93198c532
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.