PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization the operation parameters of SDA desulfurization tower by flow coupling chemical reaction model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spray Drying Absorber (SDA) has been widely used for large-scale desulfurization. However, it also has some limitations. For example, the liquid absorbent easily causes scaling, which impedes the contact between the serous fluid and the flue gas and reduces the chemical reaction rate and desulfurization efficiency. This paper establishes the mathematical and physical model of gas and liquid two-phase flow and droplet evaporation and heat transfer in rotary spray desulfurization tower. To study the accumulation and distribution of chemical reaction precipitates in the desulfurization tower and analyze the removal efficiency of sulfur dioxide (SO2) in different atomization diameters, this paper establishes a simulation model concerning the coupling of desulfurization reaction and flow field calculation based on the absorption and reaction mechanism of SO2. Baffle in different widths are set to optimize the internal floweld and balance the distribution of flue gas. By setting baffles of different widths to optimize the flow feld in the tower and changing the distribution of flue gas, this model reduces the scaling while ensuring the desulfurization efficiency. The results of the simulation experiment have verified that the droplet with a diameter of 50 μm is the optimal option, which can effectively remove the scaling and ensure that the desulfurizing tower runs in high efficiency and stability. When the width of baffes is 2250 mm, the efficiency of desulfurization exceeds 95%, and the amount of scaling on the desulfurization tower main wall is controlled at the minimum level, which is the optimal option for production.
Rocznik
Strony
35--45
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
  • Hubei Key Laboratory of Industrial Fume & Dust Pollution Control, Jianghan University, Wuhan 430056, China
autor
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
autor
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
autor
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
autor
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China
  • Hubei Key Laboratory of Industrial Fume & Dust Pollution Control, Jianghan University, Wuhan 430056, China
autor
  • Hubei Key Laboratory of Industrial Fume & Dust Pollution Control, Jianghan University, Wuhan 430056, China
Bibliografia
  • 1. Feng, Yu-zhi. & Wang, Ying-gang. (2000). The harms and preservation of sulfur dioxide to industrial workers. On-Ferrous Mining and Metallurgy. 1, 47–48
  • 2. Rao, Zhi-jun. (2005). Research on rotary spray technology and its electromechanical system. Tianjin University. DOI: 10.7666/d.y848955.
  • 3. Liu, Yong-feng, Wei, Chuan-wen & Zhang, Xu. (2008). Suitable sintered flue gas desulfurization for SDA technology. China Steel. Pap. (5), 32–33. DOI: 10.3969/j.issn.1672-5115.2008.05.009.
  • 4. Lan, Guo-qian, Liu, Jian-qiu & Zhang, Jiang-wei. (2014). Present situation and trends of the sintering flue gas Desulphurization in iron and steel industry. China Enwiron. Protec. Ind. (6), 42–46. DOI: 10.3969/j.issn.1006-5377.2014.06.012.
  • 5. Hans, T., Karlsson & Jonas, Klingspor. (1987). Tentative modelling of spray-dry scrubbing of SO2. Chem. Engin. Technol. 10(1), 104–112. DOI: 10.1002/ceat.270100114.
  • 6. Hill, F.F. & Zank, J. (2000). Flue gas desulphurization by spray dry absorption. Chem. Eng. Proce. 39(1), 45–52. DOI: 10.1016/S0255-2701(99)00077-X.
  • 7. Gullett, B.K. (1987). Fundamental process involved in SO2 capture by calcium-based adsorbents. Fourth Annual Pittsburgh coal conference. OSTI: 5790586.
  • 8. Xu, G., Guo, Q., Kaneko, T. & et al. (2000). A new semi-dry desulfurization process using a powder-particle spouted bed. Adv. Enwiron. Res. 4(1), 9–18. DOI: 10.1016/S1093-0191(00)00003-4.
  • 9. Dantuluri, S.R., Davis, W.T., Counce, R.M. & et al. (1990). Mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Chem. Engin. Commun. 25(13–15), 1843–1855. DOI: 10.1080/01496399008050428.
  • 10. Wentz, T.H. & Thygeson, J.R. (1979). Handbook of separation technique for chemical engineers, chapter 4.10, MaGraw-Hill. DOI: 10.1002/aic.690260238.
  • 11. Ranz, W.F. & Marshall, W.R. (1952). Evaporation from drops. Chem. Engin. 48(3), 141–146. DOI:
  • 12. Partridge, G.P., Davis, W.T. & Robert, M. (1990). Counce and Gregory D. Reed. A mechanistically based mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Chem. Engin. Commun. 96(8), 97–112. DOI: 10.1080/00986449008911485.
  • 13. And, H.M.Y. & Sang, S.K. (2000). Experimental study on the spray characteristics in the Spray Drying Absorber. Environ. Sci. Technol. 34(21), 4582–4586. DOI: 10.1021/es001104c.
  • 14. Keener, T.C., Wang, J. & Khang, S.J. (1998). Advances in spray drying desulfurization for high-sulfur coals. Dry scrubbing technologies for flue gas desulfurization. Springer US. Pap. 607–690. DOI: 10.1007/978-1-4615-4951-2_8.
  • 15. Cheng, Ming-gong & Zhi-You-gang. (2000). Theoretical analysis of desulfurization influence factors of flue gas. Jiangsu Environ. Sci. Technol. 13(1), 1–3. DOI: CNKI:SUN:JSHJ.0.2000-01-000.
  • 16. Kim, H. & Sung, N. (2003). The effect of ambient pressure on the evaporation of a single droplet and a spray. Combus. Flame. 135(3), 261–270. DOI: 10.1016/S0010-2180(03)00165-2.
  • 17. Kang, Mei-qiang. (2013). Study on flue gas desulfurization wastewater duct evaporation treatment system design and experiment. Chongqing University. DOI: 10.7666/d.D354464.
  • 18. Han, Fang-liang, Li, Guo-hua & Xu, Ning. (2006). Parameters simulation of flow field in spray drying flue gas desulfurization tower. China Water Transport. 6(10), 66–68. DOI: CNKI:SUN:SYZB.0.2006-10-029.
  • 19. Scala, F., D’Ascenzo, M. & Lancia, A. (2004). Modeling flue gas desulfurization by spray-dry absorption. Separ. Purfic. Technol. 34(1), 143–153. DOI: 10.1016/S1383-5866(03)00188-6.
  • 20. Karlsson, H.T. & Klingspor, J. (1987). Tentative modelling of spray-dry scrubbing of SO2. Chem. Eng. Technol. 10(1), 104–112. DOI: 10.1002/ceat.270100114.
  • 21. Scala, F. & D’Ascenzo, M. (2002). Absorption with instantaneous reaction in a droplet with sparingly soluble fines. Aiche Journal. 48(8), 1719–1726. DOI: 10.1002/aic.690480813.
  • 22. Chen, Jian-zhong. (2017). Study on coke oven desulfurization and the reheat of sintering flue gas before denitrification. Zhejiang University.
  • 23. Wang, Nai-hua. (2001). Experimental and mechanism analysis of a novel semi-dry flue gas desulfurization. Zhejiang University.
  • 24. Qin, Lin-bo & Han, Jun. (2017). Simultaneous removal of SO2 and PAHs by adding calcium-based additives during sewage sludge incineration in a fluidized bed incinerator. J. Mater. Cycles Waste Manag. 19(3), 1061–1068. DOI: 10.1007/s10163-017-0592-6.
  • 25. Qin, Lin-bo & Han, Jun. (2016). Experimental study on SO2 removal during novel integrated desulfurization process. Fres. Environ. Bull. 25(11), 4561–4565. DOI: 10.1142/9789813143401_0056.
  • 26. Liu, Huan. (2016). Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning. Apll. Energy. 179, 1062–1068. DOI: 10.1016/j.apenergy.2016.07.063
  • 27. Qin, Lin-bo & Han, Jun. (2017). Enhancing SO2 removal efficiency by lime modiffed with sewage sludge in a novel integrated desulfurization process. Environ. Protec. Engin. 43(4), 17–27. DOI:
  • 28. Wang, Fu-jun. (2004). Computational fluid dynamics analysis: principles and applications of CFD software. Tsinghua University Press, Beijing.
  • 29. Cheng, W.C., Liu, C.H. & Leung, D.Y.C. (2009). On the correlation if air and pollutant exchange for street canyons in combined wind-buoyancy-driven flow. Atmosp. Environ. 43(24), 3682–3690. DOI: 10.1016/j.atmosenv.2009.04.054.
  • 30. Gu Bing, He Shen-fu & Jiang Chuang-ye. (2013). Application of spray drying absorption (SDA) in desulphurization of sintering flue gas. Environ. Engin. 31(2), 53–56. DOI: 10.13205/j.hjgc.201302015.
  • 31. ANSYS ICEM CFD user guide. (2016). Ansys Inc. 32. ANSYS CFX user guide. (2016). Ansys Inc.
  • 33. Dantuluri, S.R., Davis, W.T., Counce, R.M. & et al. (1990). Mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Chem. Engin. Commun. 25(13–15), 1843–1855. DOI: 10.1080/01496399008050428.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72d0e64a-68a5-4779-b1cb-ca55b2c4a776
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.