PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Monitoring climate changes on small scale networks using ground based GPS and meteorological data

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The total zenith tropospheric delay (ZTD) and its components, hydrostatic and wet parts are important parameters of the atmosphere and directly or indirectly reflect climate processes. This possibility can be more adaptive when meteorological data are combined to co-located meteorological sensors with GPS stations. In this paper eighteen months with one hour time interval ZTD estimates of a permanent GPS station are analyzed with the associated atmospheric parameters provided from a co-located meteorological sensor. The mathematical relationship through the multiple stepwise regression analysis reflects the plausible physical link of temperature and relative humidity values with ZTD’s. This regression equation is assessed by a second data set performed by a small GPS baseline few months later for the same study area. It was found that mainly due to the zenith wet delay variations and with the help of fundamental meteorological equations the behavior of water vapor pressure can be monitored and estimated. This is possible when an appropriate setup of GPS stations and a co-located meteorological sensor exist and if the GPS stations sound the same part of atmosphere. Therefore, the GPS tropospheric products are good indicators for a climate monitoring tool and can help address the physics of a climate model.
Rocznik
Strony
125--135
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Aristotle University of Thessaloniki, Department of Geodesy and Surveying University box 432, 54124, Thessaloniki, Greece
Bibliografia
  • Bennit G. V., Jupp A., (2012). Operational Assimilation of GPS Zenith Total Delay observations into the UK Met Office Numerical Weather Prediction models, Mon. Weather Rev., 140, 2706-2719, http://dx.doi.org/10.1175/MWR-D-11-00156.1
  • Bevis M, Businger S, Herring T. A, Rocken C, Anthes R. A, Ware R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research, 97, 15784-15801.
  • Bruyninx C., (2004). The EUREF Permanent Network: a multi-disciplinary network serving surveyors as well as scientists. Geoinformatics, 7, 32-35.
  • Brown C.E., (1998). Applied multivariate statistics in Geohydrology and related sciences. Springer-Verlag, Berlin.
  • Dach R, Hugentobler U, Fridez P, Meindl M. (2007). Bernese GPS software version 5.0. Astronomical Institute, University of Bern, Switzerland.
  • Duan J., Bevis, M., Fang, P., Bock, Y., Chiswell, ST., Businger ST. (1996). GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water, Journal of Applied Meteorology, 35, 830-838.
  • Enslein K., Ralston, A. & Wilf H. S. (1977). Statistical Methods for Digital Computers. New York, USA.
  • Flokas A. (1997). Lessons of Meteorology and Climatology. 2nd edition, Thessaloniki, Greece.
  • Fotiou A., Pikridas C. (2012). GPS and Geodetic Applications, 2nd edition, (Eds.) Ziti, Thessaloniki, Greece.
  • Hashino M. & Yue S., 1994. Statistical analysis of effects of monthly temperature on monthly precipitation properties. In: Proc. Second Symposium on Earth Environment (Tokyo), JSCE, 207-212.
  • Hofmann-Wellenhof B., H.Lichtenegger and J.Collins. (1997). Global Positioning System. Theory and Practice, fourth revised edition, Spinger-Verlag, New York.
  • Houssos , Lolis CJ, Gkikas A, Hatzianastassiou N, Bartzokas A. (2012). On the atmospheric circulation characteristics associated with fog in Ioannina, North-Western Greece. International Journal of Climatology, 32, 1847-1862.
  • IPCC (1995). Report of the Intergovernmental Panel on Climate Change, (http://www.ipcc.ch/).
  • Karabatic A., Weber R., Haiden T. (2011). Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Advances in Space Research, 47, 1691-1703.
  • LiouY-A., Teng Y., T., T. van Hove, Liljegren J. (2001). Comparison of precipitable water observations in the near tropics by GPS, Microwave radiometer and radiosondes. Journal of Applied Meteorology, 40, 5-15.
  • Marija J. Norusis 2005. Guide to data analysis with SPSS. ditions Klidarithmos, Athens, Greece.
  • Niell A.E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophyical Research,101(B2) 3227-3246.
  • Saastamoinen J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Series, vol. 15, (Eds.), Henriksen S. W, A. Mancini, and B.H. Chovitz, 247-251, AGU, Washington D.C. 1972.
  • Schüler T. (2001). On Ground-Based GPS Tropospheric Delay Estimation, PhD Thesis, Institute of Geodesy and Navigation, University FAF Munich Germany.
  • Sindosi, O.A., Bartzokas, A., Kotroni, V., Lagouvardos, K. (2012). The impact of topography on the precipitation regime over Epirus, NW Greece, during the cold period of the year. Advances in Meteorology, Climatology and Atmospheric Physics. Proceedings of COMECAP 2012, (Eds.), C.G. Helmis, P. Nastos, Springer Atmospheric Sciences, 285-291.
  • Tregoning P., Herring T.A. (2006). Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays. Geophysical Research Letters,33, http://dx.doi.org/10.1019/2006GL027706.
  • Van der Marel, H. (2004). COST-716 demonstration project for the near real-time estimation of integrated water vapour from GPS. Physics and Chemistry of the Earth, Parts A/B/C, 29 pp.187-199, http://dx.doi.org/10.1016/j.pce.2004.01.001.
  • Vazquez G.E., Brzezinska D. (2012). GPS-PWV estimation and validation with radiosonde data and numerical weather prediction model in Antarctica. GPS Solutions, http://dx.doi.org/10.1007/s10291-012-0258-8.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72cd58a8-1177-4b93-804d-fec3db1183fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.