PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rainfall and rainy days trend and ENSO phenomena in Himalayan Kingdom of Bhutan

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study explores the seasonal rainfall and rainy days trend in the Himalayan Kingdom of Bhutan. Mann-Kendall and Sen’s slope test was applied to detect the trend and magnitude of the trend for both the rainfall and rainy days. The trends are also analyzed with respect to the elevation of the climatic stations. Further, an attempt has been made to recognize the El-Ni ño-Southern Oscillation (ENSO)-rainfall interaction using station-based rainfall with the ENSO cycle considering the period of 33 years. Cross-correlation of ENSO and rainfall with respect to elevation has also been presented. The trend analysis showed that in the localized regions, both the rainfall and rainy days trend was significantly declining, however, the trend in most of the stations is hardly conspicuous which may be attributed to the influence of the orographic phenomena. From the ENSO-rainfall assessment, it was observed that rainfall in the southern foothills correlates negatively with the ENSO phenomena indicating intense rainfall after 1–2 months of the cooling phase of the Pacifc Ocean. However, such an ENSO effect is not observed in the majority of the meteorological stations which may be attributed to the location of the station in the mountainous region where the topography affects the rainfall variation.
Czasopismo
Rocznik
Strony
1855--1869
Opis fizyczny
Bibliogr. 54 poz.
Twórcy
  • Department of Civil Engineering and Surveying, Jigme Namgyel Engineering College, Royal University of Bhutan, Dewathang, Samdrup Jongkhar 41001, Bhutan
  • adhikari.cst@rub.edu.bt
  • Department of Civil Engineering, College of Science and Technology, Royal University of Bhutan, Rinchending, Phuentsholing 21104, Bhutan
Bibliografia
  • 1. Adhikari K, Choden Y, Cheki T et al (2020) Performance evaluation of satellite precipitation estimation with ground monitoring stations over southern himalayas in bhutan. Acta Geophys 68(3):933–943. https://doi.org/10.1007/s11600-020-00434-z
  • 2. Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian ocean dipole on the relationship between the Indian monsoon rainfall and enso. Geophys Res Lett 28(23):4499–4502. https://doi.org/10.1029/2001GL013294
  • 3. Barros VR, Field CB, Dokken DJ, et al (2014) Climate change 2014 impacts, adaptation, and vulnerability part b: regional aspects: working group II contribution to the fifth assessment report of the intergovernmental panel on climate change. In: Climate Change 2014: impacts, adaptation and vulnerability: part B: regional aspects: working group II contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp 1–1820
  • 4. Basistha A, Arya D, Goel N (2009) Analysis of historical changes in rainfall in the Indian Himalayas. Int J Climatol A J R Meteorol Soc 29(4):555–572. https://doi.org/10.1002/joc
  • 5. Chaubey PK, Srivastava PK, Gupta A et al (2021) Integrated assessment of extreme events and hydrological responses of indo-nepal gandak river basin. Environ Dev Sustain 23(6):8643–8668. https://doi.org/10.1007/s10668-020-00986-6
  • 6. Da Silva RM, Santos CA, Moreira M et al (2015) Rainfall and river flow trends using mann-kendall and sen’s slope estimator statistical tests in the cobres river basin. Nat Hazards 77(2):1205–1221. https://doi.org/10.1007/s11069-015-1644-7
  • 7. Dai A, Wigley T (2000) Global patterns of enso-induced precipitation. Geophys Res Lett 27(9):1283–1286
  • 8. Dorji U, Olesen JE, Bøcher PK et al (2016) Spatial variation of temperature and precipitation in Bhutan and links to vegetation and land cover. Mt Res Dev 36(1):66–79. https://doi.org/10.1659/MRD-JOURNAL-D-15-00020.1
  • 9. Duan K, Yao T, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res Atmos 111(D19):1–8. https://doi.org/10.1029/2006JD007084
  • 10. Feng S, Hu Q (2004) Variations in the teleconnection of enso and summer rainfall in northern china: a role of the indian summer monsoon. J Clim 17(24):4871–4881. https://doi.org/10.1175/JCLI-3245.1
  • 11. Fu C, Jiang Z, Guan Z et al (2008) Interannual variability of summer climate of china in association with ENSO and the Indian Ocean Dipole. Springer, Berlin, Heidelberg, pp 119–154
  • 12. Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using mann-kendall and sen’s slope estimator statistical tests in Serbia. Global Planet Change 100:172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014
  • 13. Guijarro JA (2018) Homogenization of climatological series with Climatol 3.11. State Meteorological Agency (AEMET), Balearic Islands Office, Spain
  • 14. Gupta V, Jain MK (2020) Impact of ENSO, global warming, and land surface elevation on extreme precipitation in India. J Hydrol Eng 25(1):1–16. https://doi.org/10.1061/(asce)he.1943-5584.0001872
  • 15. Hafez Y et al (2016) Study on the relationship between the oceanic nino index and surface air temperature and precipitation rate over the kingdom of saudi arabia. J Geosci Environ Protect 4(05):146. https://doi.org/10.4236/gep.2016.4501
  • 16. Hamed KH, Rao AR (1998) A modified mann-kendall trend test for autocorrelated data. J Hydrol 204(1–4):182–196. https://doi.org/10.1200/jco.2018.36.15_suppl.522
  • 17. Hijioka Y, Lin E, Pereira JJ, et al (2014) Asia. climate change 2014: impacts, adaptation, and vulnerability. part b: regional aspects. contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. Climate change
  • 18. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. Tech. rep., IPCC, Cambridge University Press, Cambridge, United Kingdom and NewYork, NY, USA
  • 19. Jaswal A, Karandikar A, Gujar M et al (2015) Seasonal and annual rainfall trends in Himachal Pradesh during 1951–2005. Mausam 66(2):247–264
  • 20. Khandekar M (1991) Eurasian snow cover, Indian monsoon and el niño/southern oscillation-a synthesis. Atmos Ocean 29(4):636–647. https://doi.org/10.1080/07055900.1991.9649422
  • 21. Kripalani R, Kulkarni A, Sabade S et al (2003) Indian monsoon variability in a global warming scenario. Nat Hazards 29(2):189–206
  • 22. Kripalani RH, Kulkarni A (1997) Rainfall variability over south-east Asia-connections with Indian monsoon and enso extremes: new perspectives. Int J Climatol J R Meteorol Soc 17(11):1155–1168
  • 23. Kumar V, Jain SK, Singh Y (2010) Analysis of long-term rainfall trends in India. Hydrol Sci J -J Des Sci Hydrol 55(4):484–496. https://doi.org/10.1080/02626667.2010.481373
  • 24. Liu XF, Yuan HZ, Zy G (2009) Effects of enso on the relationship between Iod and summer rainfall in China. J Trop Meteorol 15(1):59–62. https://doi.org/10.3969/j.issn.1006-8775.2009.01.009
  • 25. Medina S, Houze RA Jr, Kumar A et al (2010) Summer monsoon convection in the Himalayan region: terrain and land cover effects. Q J R Meteorol Soc J Atmos Sci Appl Meteorol Phys Oceanogr 136(648):593–616. https://doi.org/10.1002/qj.601
  • 26. MOLHR (2017) Labour Force Report Survey. Tech. rep., Ministry of Labour and Human Resource, Ministry of Labour and Human Resource, Thimphu
  • 27. NCHM (2017) Bhutan State of the Climate 2017. Tech. rep., National Centre for Hydrology and Meteorology, Royal Government of Bhutan, Thimphu, Bhutan
  • 28. NCHM (2019) Analysis of Historical Climate and Climate Projection for Bhutan. Tech. rep., National Centre for Hydrology and Meteorology, Royal Government of Bhutan, Thimphu, Bhutan
  • 29. Pal AB, Khare D, Mishra PK et al (2017) Trend analysis of rainfall, temperature and runoff data: a case study of Rangoon watershed in Nepal. Int J Stud Res Technol Manag 5:21–38
  • 30. Panthi J, Dahal P, Shrestha ML et al (2015) Spatial and temporal variability of rainfall in the Gandaki river basin of Nepal Himalaya. Climate 3(1):210–226. https://doi.org/10.3390/cli3010210
  • 31. Power K, Axelsson J, Wangdi N et al (2021) Regional and local impacts of the enso and iod events of 2015 and 2016 on the Indian summer monsoon-a Bhutan case study. Atmosphere 12(8):954
  • 32. Prajapati R, Talchabhadel R, Silwal P et al (2021) Less rain and rainy days-lessons from 45 years of rainfall data (1971–2015) in the Kathmandu valley, Nepal. Theoret Appl Climatol 145(3):1369–1383. https://doi.org/10.1007/s00704-021-03706-w
  • 33. Prasetyo Y, Nabilah F (2017) Pattern analysis of el nino and la nina phenomenon based on sea surface temperature (sst) and rainfall intensity using oceanic nino index (oni) in west java area. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing, p 012041, https://doi.org/10.1088/1755-1315/98/1/012041
  • 34. Preece JR, Shinker JJ, Riebe CS et al (2021) Elevation-dependent precipitation response to El Niño-Southern oscillation revealed in headwater basins of the US central Rocky Mountains. Int J Climatol 41(2):1199–1210. https://doi.org/10.1002/joc.6790
  • 35. Qiao Y, Huang W, Jian M (2012) Impacts of el niño-southern oscillation and local sea surface temperature on moisture source in Asian–Australian monsoon region in boreal summer. Aquat Ecosyst Health Manag 15(1):31–38. https://doi.org/10.1080/14634988.2012.649667
  • 36. Rajeevan M, Pai D (2007) On the el niño-Indian monsoon predictive relationships. Geophys Res Lett. https://doi.org/10.1029/2006GL028916
  • 37. Romatschke U, Medina S, Houze RA (2010) Regional, seasonal, and diurnal variations of extreme convection in the south Asian region. J Clim 23(2):419–439. https://doi.org/10.1175/2009JCLI3140.1
  • 38. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the el niño/southern oscillation. Mon Weather Rev 115(8):1606–1626. https://doi.org/10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2
  • 39. Ropelewski CF, Jones PD (1987) An extension of the Tahiti-darwin southern oscillation index. Mon Weather Rev 115(9):2161–2165. https://doi.org/10.1175/1520-0493(1987)115<2161:aeotts>2.0.co;2
  • 40. Sen PK (1968) Estimates of the regression coefficient based on kendall’s tau. J Am Stat Assoc 63(324):1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • 41. Shahnawaz SJ, Strobl J (2015) A zonal analysis of the climatic conditions in bhutan. Climate change, environment and development in Bhutan, Thimphu, Bhutan pp 1–22
  • 42. Shrestha S (2000) Interannual variation of summer monsoon rainfall over Nepal and its relation to southern oscillation index. Meteorol Atmos Phys 75(1):21–28
  • 43. Shrestha AB, Wake CP, Dibb JE et al (2000) Precipitation fluctuations in the Nepal Himalaya and its vicinity and relationship with some large scale climatological parameters. Int J Climatol J R Meteorol Soc 20(3):317–327. https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3<317::AID-JOC476>3.0.CO;2-G
  • 44. Shrestha S, Rahimzadeh-Bajgiran P, De Urioste-Stone S (2020) Probing recent environmental changes and resident perceptions in upper Himalaya, Nepal. Remote Sens Appl Soc Environ 18(100):315. https://doi.org/10.1016/j.rsase.2020.100315
  • 45. Singh G, Sharif M, Mohammed S (2017) Investigation of linkages of el-nino southern oscillation with monsoonal precipitation in India. J Earth Sci Climat Change 8(11):1–6. https://doi.org/10.4172/2157-7617.1000426
  • 46. Taxak A, Murumkar A, Arya D (2014) Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, central India. Weather Climate Extremes. https://doi.org/10.1016/j.wace.2014.04.005
  • 47. Tuladhar D, Dewan A, Kuhn M et al (2020) Spatio-temporal rainfall variability in the Himalayan mountain catchment of the Bagmati river in Nepal. Theoret Appl Climatol 139(1):599–614. https://doi.org/10.1007/s00704-019-02985-8
  • 48. Van Rooy M (1965) A rainfall anomaly index independent of time and space. Notos
  • 49. Xiao M, Zhang Q, Singh VP (2015) Influences of enso, nao, iod and pdo on seasonal precipitation regimes in the Yangtze river basin, China. Int J Climatol 35(12):3556–3567. https://doi.org/10.1002/joc.4228
  • 50. Yue S, Hashino M (2003) Long term trends of annual and monthly precipitation in Japan 1. JAWRA J Am Water Resour Assoc 39(3):587–596. https://doi.org/10.1111/j.1752-1688.2003.tb03677.x
  • 51. Zhang L, Shi R, Fraedrich K et al (2022) Enhanced joint effects of ENSO and IOD on Southeast China winter precipitation after 1980s. Clim Dyn 58(1):277–292. https://doi.org/10.1007/s00382-021-05907-5
  • 52. Zhang Y, Li J, Xue J et al (2019) The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean dipole development. Clim Dyn 53(11):6665–6680. https://doi.org/10.1007/s00382-019-04953-4
  • 53. Zhang Y, Zhou W, Leung MYT (2019) Phase relationship between summer and winter monsoons over the South China Sea: Indian Ocean and ENSO forcing. Clim Dyn 52(9):5229–5248. https://doi.org/10.1007/s00382-018-4440-8
  • 54. Zhang Y, Zhou W, Wang X et al (2022) Iod, enso, and seasonal precipitation variation over eastern China. Atmos Res 270(106):042. https://doi.org/10.1016/j.atmosres.2022.106042
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72cc47e9-5e4d-4aed-af23-6b9f9e9bc89c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.