PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dendrymery – fascynujące nanocząsteczki w zastosowaniu w medycynie

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Dendrimers – fascinating nanoparticles in the application in medicine
Języki publikacji
PL EN
Abstrakty
PL
Dendrymery, to związki organiczne o regularnej strukturze, stanowiące stosunkowo nową klasę polimerów z potencjalnym zastosowaniem w wielu dziedzinach nauki oraz przemysłu. Cząsteczki te są symetrycznie rozgałęzione, przez co kształtem przypominają kulę. Dendrymery mogą znaleźć zastosowanie przede wszystkim w medycynie oraz nanotechnologii, a także w chemii organicznej i nieorganicznej.
EN
Dendrimers are organic compounds with a regular structure. They are a relatively new class of polymers, which can find potential application in various fields of science and industry. Dendrimers are symmetrically branched, three-dimensional, mainly spherical molecules. Described nanoparticles can find potential application mainly in medicine, nanotechnology, and recently in inorganic and organic chemistry.
Czasopismo
Rocznik
Strony
141--150
Opis fizyczny
Bibliogr. 41 poz., tab., rys.
Twórcy
autor
  • Studenckie Koło Naukowe Biotechnologów FER MENT , Wydział Biotechnologii i Nauk o Żywności, Politechnika Łódzka, Łódź
Bibliografia
  • 1. Vögtle F., Weber E.: Octopus molecules. Angew. Chem. Int. Ed. 1974, 13, 12, 814–816.
  • 2. Buhleier E., Wehner W., Vögtle F.: Cascade-chain-like and nonskidchain-like syntheses of molecular cavity topologies. Synthesis 1978, 2, 155–158.
  • 3. Tomalia D.A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P.: A new class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 17, 1, 117–132
  • 4. Tomalia D.A., Baker H., Dewald J., Hall M., Kallos G., Martin S., Roeck J., Ryder J., Smith P.: Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 1986, 19, 9, 2466–2468
  • 5. Newkome G.R., Yao Z., Baker G.R., Gupta V.K.: Cascade molecules:a new approach to micelles. A [27]-arborol. J. Org. Chem. 1985, 50, 11, 2003–2004
  • 6. Urbańczyk-Lipkowska Z.: Dendrymery w naukach biomedycznych. Gaz Farm 2008, 11, 34–36
  • 7. Hawker C.J., Frechet J.M.J.: Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Amer. Chem. Soc. 1990, 112, 21, 7638–7647
  • 8. Doubrovin M., Serganova I., Mayer-Kuckuk P., Ponomares V., Blasberg R.G.: Multimodality in vivo molecular-genetic imaging. Bioconjugate Chem. 2004, 15, 6, 1376–1388
  • 9. Caravan P., Ellison J.J., McMurry T.J, Lauffer R.B.: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics and applications. Chem.Rev. 1999, 99, 9, 2293–2352
  • 10. Tweedle M.F., Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Invest. Radiol. 1992, 27, S2-S6
  • 11. Franano F.N., Edwards W.B., Welch M.J., Brechbiel M.W., Gansow O.A. Duncan J.R.: Biodistribution and metabolism of targeted and nontargeted protein-chelate-gadolinium complexes: evidence for gadolinium dissociation in vitro and in vivo. Magn. Reson. Imaging 1995, 13, 2, 201–214
  • 12. Schuhmann-Giampieri G., Schmitt-Willich H., Frenzel T., Press W.R., Weinmann H.J.: In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest. Radiol. 1991, 26, 11, 969–974
  • 13. Wiener E.C., Brechbiel M.W., Brothers H., Magin R.L., Gansow O.A., Tomalia D.A., Lauterbur P.C.: Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 1994, 31, 1, 1–8
  • 14. Klajnert B., Bryszewska M.: Dendrimers in Medicine. Nova Science Publishers 2007, 19–35
  • 15. Sękowski S., Miłowska K., Gabryelak T.: Dendrymery w naukach biomedycznych i nanotechnologii. Post. Hig. 2008, 62, 725–733
  • 16. Klajnert B., Bryszewska M.: Dendrimers in Medicine. Nova Science Publishers 2007, 50–53
  • 17. Roy R., Zanini D., Meunier S.J., Romanowska A.: Solid-phase synthesis of dendritic sialoside inhibitors of influenza A virus haemagglutinin. J. Chem. Soc., Chemical Communications 1993, 24, 1869–1872
  • 18. Supattapone S., Nguyen H-O.B., Cohen F.E., Prusiner S.B., Scott M.R.: Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. USA 1999, 96, 25, 14529–14534
  • 19. Klajnert B., Cortijo-Arellano M., Cladera J., Majoral J.P., Caminade A.M. , Bryszewska M.: Influence of phosphorus dendrimers on the aggregation of the prion peptide PrP 185–208. Biochem. Biophys. Res. Commun. 2007, 364, 1, 20–25
  • 20. Shaunak S., Thomas S., Gianasi E., Godwin A., Jones E., Teo I., Mireskandari K., Luthert P., Duncan R., Patterson S., Khaw P., Brocchini S. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat. Biotechnol. 2004, 22, 8, 977–984
  • 21. Caminade A.M., Turrin C.O., Majoral J.P.: Biological properties of phosphorus dendrimers. New J. Chem. 2010, 34, 8, 1512–1524
  • 22. Turrin C. O., Caminade A. M., Majoral J. P., Poupot M., Fournie J. J.,Poupot R.: Immuno-modulations induced by phosphored dendrimers. Bull. Cancer. 2010, 97, S60-S61
  • 23. Griffe L., Poupot M., Marchand P., Maraval A., Turrin C.O., Rolland O., Métivier P., Bacquet G., Fournié J.J., Caminade A.M., Poupot R., Majoral J.P.: Multiplication of human natural killer cells by nanosized phosphonatecapped dendrimers. Angew. Chem. Int. Ed. 2007, 46, 14, 2523–2526
  • 24. Chauhan A.S., Diwan P.V., Jain N.K., Tomalia D.A.: Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly-(amidoamine) dendrimers. Biomacromolecules 2009, 10, 5, 1195–1202
  • 25. Milhem O.M., Myles C., McKeown N.B., Attwood D., D’Emanuele A.: Polyamidoamine Starburst dendrimers as solubility enhancers. Int. J. Pharm. 2000, 197, 239–241
  • 26. Devarakonda B., Hill R.A., Liebenberg W., Brits M., de Villiers M.M.: Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm. 2005, 304, 193–209
  • 27. Malik N., Evagorou E.G., Duncan R.: Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 1999, 10, 8, 767–776
  • 28. Majoros I.J., Thomas T.P., Mehta C.B., Baker J.R. Jr: Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J. Med. Chem. 2005, 48, 19, 5892–5899
  • 29. Na M., Yiyun C., Tongwen X., Yang D., Xiaomin W., Zhenwei L., Zhichao C., Guanyi H., Yunyu S., Longping W.: Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. Eur. J. Med. Chem. 2006, 41, 5, 670–674
  • 30. Bielinska A., Kukowska-Latallo J.F., Johnson J., Tomalia D.A., Baker J.R. Jr.: Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res. 1996; 24, 11, 2176–2182
  • 31. Dufes C., Keith W.M., Proutski I., Bilsland A., Uchegbu I.F., Schätzlein A.G.: Synergistic anti-cancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors. Cancer Res. 2005, 65, 18, 8079–8084
  • 32. Kukowska-Latallo J.F., Bielinska A.U., Johnson J., Spindler R., Tomalia D.A., Baker J.R. Jr.: Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. U S A 1996, 93, 4897–4902
  • 33. Qin L., Pahud D.R., Ding Y., Bielinska A.U., Kukowska-Latallo J.F., Baker J.R.Jr., Bromberg J.S.: Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers. Hum. Gene. Ther. 1998, 9, 4, 553–560
  • 34. Sato N., Kobayashi H., Saga T., Nakamoto Y., Ishimori T., Togashi K., Fujibayashi Y., Konishi J., Brechbiel M.W.: Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin. Cancer Res. 2001, 7, 11, 3606–3612
  • 35. Uchida E., Mizuguchi H., Ishii-Watabe A., Hayakawa T.: Comparison of the efficiency and safety of non-viral vector-mediated gene transfer intoa wide range of human cells. Biol. Pharm. Bull.2002, 25, 7, 891–897
  • 36. Leng Q., Mixson A.J.: Modified branched peptides with a histidine-rich tail enhance in vitro gene transfection. Nucleic Acids Res. 2005, 33, 4, e40
  • 37. Dzmitruk V., Shcharbin D., Pedziwiatr E., Bryszewska M.: Dendrimers in Anti-HIV Therapy. Advances in Nanocomposite Technology 2011
  • 38. Boas U., Heegaard P.M.: Dendrimers in drug research. Chem. Soc. Rev. 2004, 33,1, 43–63
  • 39. Chen C.Z., Cooper S.L.: Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002, 23, 16, 3359–3368
  • 40. Price C.F,, Tyssen D., Sonza S., Davie A., Evans S., Lewis G.R., Xia S., Spelman T., Hodsman P., Moench T.R., Humberstone A., Paull J.R., Tachedjian G.: SPL7013 Gel (VivaGel®) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. PLOS One2011, 6, 9, e24095
  • 41. Klajnert B., Cortijo-Arellano M., Cladera J., Bryszewska M.: Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem. Biophys. Res. Commun. 2006, 345, 1, 21-28
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72c5d292-2398-4fdf-835c-ca202ca05638
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.