Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Various types of pollutants are present in wastewaters, which can combine and form even more toxic components or interfere with the treatments used for purification. Among emerging contaminants are microplastics and surfactants, which coexist in different types of wastewaters. This study aimed to assess the effects of the anionic surfactant linear alkylbenzene sulfonate (LAS) and the nonionic surfactant polyoxyethylene sorbitan monolaurate (Tween 20) on the removal of microplastics from pristine and aged glitter PVC surfaces using electrocoagulation with aluminum electrodes. To avoid interference from other substances, a benchtop reactor operating in batch mode with particles suspended in ultrapure water was developed for the experiments. The analysis methods employed included counting with the aid of a magnifying glass, gravimetry, zeta potential measurements, and scanning electron microscopy. The results revealed that the addition of surfactants led to a reduction in the removal efficiency of plastic microparticles. The lowest removal percentages were observed at a concentration of 100 ppm, and the inclusion of Tween 20 resulted in a decrease of 23% for pristine microplastics and 45% for aged microplastics. In contrast, the addition of LAS led to a decrease of 6% for pristine microplastics and 24% for aged microplastics. Therefore, the decrease in removal efficiency was more pronounced for degraded microplastics in both the Tween 20 and LAS experiments. Comparing the reduction in removal efficiency between the two types of surfactants, it can be observed that the nonionic surfactant (Tween 20) had a greater impact on the removal of microplastics by electrocoagulation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
51--62
Opis fizyczny
Bibliogr. 23 poz, rys., tab.
Twórcy
- School of Civil and Environmental Engineering, Federal University of Goias, 1488 Goiania, Goias 7465-220, Brazil
- School of Civil and Environmental Engineering, Federal University of Goias, 1488 Goiania, Goias 7465-220, Brazil
- School of Civil and Environmental Engineering, Federal University of Goias, 1488 Goiania, Goias 7465-220, Brazil
Bibliografia
- 1. Patil S. M., Rane N. R., Bankole P.O., Krishnaiah P., Ahn Y., Park Y. K., Yadav K. K., Amin M. A., Jeon B.-H. 2022. An assessment of micro- and nanoplastics in the biosphere: A review of detection, monitoring, and remediation technology, Chem. Eng. J., 430, 132913. doi: 10.1016/j.cej.2021.132913.
- 2. Wang X., Bolan N., Tsang D. C. W., Sarkar B., Bradney L., and Li Y. 2021. A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications, J. Hazard. Mater., 402, 123496. doi: 10.1016/j.jhazmat.2020.123496.
- 3. Klein S., Worch E., and Knepper T. P. 2015. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany, Environ. Sci. Technol., 49(10), 60706076. doi: 10.1021/acs.est.5b00492.
- 4. Hernandez E., Nowack B., and Mitrano D. M. 2017. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing, Environ. Sci. Technol., 51(12), 7036–7046. doi: 10.1021/acs. est.7b01750.
- 5. Li X., Yoneda M., Shimada Y., and Matsui Y. 2017. Effect of surfactants on the aggregation and stability of TiO2 nanomaterial in environmental aqueous matrices. Sci. Total Environ., 574, 176–18. doi: 10.1016/j.scitotenv.2016.09.065.
- 6. Jenner L. C., Rotchell J. M., Bennett R. T., Cowen M., Tentzeris V., and Sadofsky L. R. 2022. Detection of microplastics in human lung tissue using μFTIR spectroscopy, Sci. Total Environ., 831, 154907. doi: 10.1016/j.scitotenv.2022.154907.
- 7. Ragusa A., Svelato A., Santacroce C., Catalano P., Notarstefano V., Carnevali O., Papa F., Ciro M., Rongioletti A., Baiocco F., Draghi S., D’Amore E., Rinaldo D., Matta M., Giorgini E. 2021. Plasticenta: First evidence of microplastics in human placenta,” Environ. Int., 146, 106274. doi: 10.1016/j. envint.2020.106274.
- 8. Leslie H. A., van Velzen M. J. M., Brandsma S. H., Vethaak A. D., Garcia-Vallejo J. J., and Lamoree M. H. 2022. Discovery and quantification of plastic particle pollution in human blood, Environ. Int., 163, 107199. doi: 10.1016/j.envint.2022.107199.
- 9. Yang Y., Xie E., Du Z., Peng Z., Han Z., Li L., Zhao R., Qin Y., Xue M., Li F., Hua K., Yang X. 2023. Detection of Various Microplastics in Patients Undergoing Cardiac Surgery, Environ. Sci. Technol., 57(30), 10911–10918. doi: 10.1021/acs.est.2c07179.
- 10. Guimarães D. B., Teran F. J. C., and Cuba R. M. F. 2021. Effect of linear alkylbenzene sulfonate (LAS) on the coagulation of ZnO nanoparticles in aqueous matrix, Desalination Water Treat., 248(1), 247–258. doi: 10.5004/dwt.2022.28123.
- 11. Guan Y., Gong J., Song B., Li J., Fang S., Tang S., Cao W., Li Y., Chen Z., Ye J., Cai Z. 2022. The effect of UV exposure on conventional and degradable microplastics adsorption for Pb (II) in sediment, Chemosphere, 286, 131777. doi: 10.1016/j. chemosphere.2021.131777.
- 12. Xia Y., Xiang X.-M., Dong K.-Y., Gong Y.-Y., and Li Z.-J. 2020. Surfactant stealth effect of microplastics in traditional coagulation process observed via 3-D fluorescence imaging, Sci. Total Environ., 729, 138783. doi: 10.1016/j.scitotenv.2020.138783.
- 13. Elkhatib D., Oyanedel-Craver V., and Carissimi E. 2021. Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities, Sep. Purif. Technol., 276, 118877. doi: 10.1016/j. seppur.2021.118877.
- 14. Oliveira T. L., Teran F. J. C., Cuba R. M. F., and Freitas F. F. 2023. Effect of Tween 20 and linear alkylbenzene sulfonate on microplastic coagulation, Desalination Water Treat., 290(1), 12–25. doi: 10.5004/dwt.2023.29444.
- 15. Hu Y., Zhou L., Zhu J., and Gao J. 2023. Efficient removal of polyamide particles from wastewater by electrocoagulation, J. Water Process Eng., 51, 103417. doi: 10.1016/j.jwpe.2022.103417.
- 16. Khan Q. F., Anum S., Sakandar H.A., Farhan M., Akhtar M.T., Afzaal M., Majeed H. 2022. Occurrence of Microplastic Pollution in Marine Water, in Microplastic Pollution: Environmental Occurrence and Treatment Technologies, M. Z. Hashmi, Ed., in Emerging Contaminants and Associated Treatment Technologies. Cham: Springer International Publishing, 257–274. doi: 10.1007/978-3-030-89220-3_13.
- 17. Perren W., Wojtasik A., and Cai Q. 2018. Removal of Microbeads from Wastewater Using Electrocoagulation, ACS Omega, 3(3), 3357–3364. doi: 10.1021/acsomega.7b02037.
- 18. Pratesi C. B. MA AL Santos Almeida, GS Cutrim Paz, MH Ramos Teotonio, L Gandolfi, Pratesi R., Hecht M., Zandonadi R. C. 2021. Presence and Quantification of Microplastic in Urban Tap Water: A Pre-Screening in Brasilia, Brazil, Sustainability, 13(11). doi: 10.3390/su13116404.
- 19. Garcia-Segura S., Eiband M. M. S. G., de Melo J. V., and Martínez-Huitle C. A. 2017. Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies, J. Electroanal. Chem., 801, 267–299. doi: 10.1016/j. jelechem.2017.07.047.
- 20. Shen M., Zhang Y,, Almatrafi E., Hu T., Zhou C., Song B., Zeng Z., Zenget G.. 2022. Efficient removal of microplastics from wastewater by an electrocoagulation process, Chem. Eng. J., 428, 131161. doi: 10.1016/j.cej.2021.131161.
- 21. Akarsu C. and Deniz F. 2021. Electrocoagulation/ Electroflotation Process for Removal of Organics and Microplastics in Laundry Wastewater, CLEAN – Soil Air Water, 49(1), 2000146. doi: 10.1002/ clen.202000146.
- 22. Xia Y., Zhou J.-J., Gong Y.-Y., Li Z.-J., and. Zeng E. Y. 2020. Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants, Environ. Pollut., 265, 115061. doi: 10.1016/j.envpol.2020.115061.
- 23. de Oliveira J. M. and Mei L. H. I. 2009. Surfactantes reativos não-iônicos em polimerização em emulsão de látices de acetato de vinila - vinil neodecanoato: influência nas propriedades de barreira à água, Polímeros, 19, 22–30. doi: 10.1590/ S0104-14282009000100009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72c1fd36-3030-419f-9dd0-66ca63f45579