PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of selected operational parameters on measures of technical condition of rolling bearings in means of transport built based on analysis of vibration signals

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents an innovative method of diagnostics of rolling bearings used in the bearing nodes of motor vehicles, with the use of a prototype specialist stand. The tests were carried out based on a developed research plan, which included the impact of damage to the bearing and tyre of the vehicle, as well as the vehicle speed. Vibration accelerations were recorded in three measurement axes. Signal spectra were created based on the time courses of the vibration signals and were further analysed. The presented method is aimed at detecting excessive wear of rolling bearings in wheels from its early period.
Rocznik
Tom
Strony
89--98
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Department of Transport Technology and Economics
Bibliografia
  • 1. Batko Wojciech, Andrzej Mikulaski. 2002. „The use of wavelet methods in the vibroacoustic monitoring systems of the hoisting device bearing”. Diagnostyka 26: 7-12. ISSN: 2449-5220.
  • 2. Cempel Czesław. 1978. Applied vibroacoustics. Warsaw: PWN. ISBN: 83-01-09034-0.
  • 3. Chiliński Bartosz. 2014. “The proposal of the bearing arrangement to work in a swinging motion”. Mechanical Overview 1(14): 15-18. ISSN 2354-0192.
  • 4. Chudzik A., B. Warda. 2020. „Fatigue life prediction of a radial cylindrical roller bearing subjected to a combined load using FEM”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 22(2): 212-220. DOI: http://dx.doi.org/10.17531/ein.2020.2.4.
  • 5. Cioch Witold, Oskar Knapik, Jacek Leśkow. 2013. “Finding a frequency signature for a cyclostationary signal with applications to wheel bearing diagnostics”. Mechanical Systems and Signal Processing 38(1): 55-64. ISSN: 0888- 3270.
  • 6. Dąbrowski Zbigniew, Jacek Dziurdź. 2007. “New concept of using coherence function in digital signal analysis”. Machine Dynamics Problems 31(3): 25-31. ISSN: 0239-7730.
  • 7. Deuszkiewicz Piotr, Stanislaw Radkowski. 2003. “On-line condition monitoring of a power transmission unit of a rail vehicle”. Mechanical System and Signal Processing 17(6): 1321-1334. ISSN: 0888- 3270.
  • 8. Engel Zbigniew. 1981. Vibrations in technology. Wrocław: The Ossoliński National Institute. ISBN: 83-04-00646-4.
  • 9. Figlus Tomasz. 2019. “A Method for Diagnosing Gearboxes of Means of Transport Using Multi-Stage Filtering and Entropy”. Entropy 21(5): 1-13. ISSN 1099-4300.
  • 10. Huang H.-Z., K. Yu, T. Huang, H. Li, H.-M. Qian. 2020. „Reliability estimation for momentum wheel bearings considering frictional heat”. Eksploatacja i Niezawodnosc – Maintenance and Reliability 22(1): 6-14. DOI: http://dx.doi.org/10.17531/ein.2020.1.2.
  • 11. Junsheng Cheng, Yu Dejie, Yang Yu. 2007. “Application of an impulse response wavelet to fault diagnosis of rolling bearings”. Mechanical Systems and Signal Processing 27(2): 920-929. ISSN: 0239-7730.
  • 12. Polański Zbigniew. 1984. Planning experiments in technology. Warsaw: PWN. ISBN: 83-01-04507-8.
  • 13. Radkowski Stanislaw. 2008. “Vibro-acoustic diagnostics of low-energy stage of failures evolution”. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering 223: 589-597. ISSN: 0954-4100.
  • 14. Randall Robert. 2011. Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications. Chichester: Wiley. ISBN: 978-0-470-74785-8.
  • 15. Raymond A. Guyer. 1996. Rolling Bearings Handbook and Troubleshooting Guide. Ohio: Taylor & Francis. ISBN: 97-80-801988-714.
  • 16. Stanik Zbigniew. 2013. Diagnosing rolling bearings of motor vehicles with vibroacoustic methods. Radom: Scientific Publisher of the Institute of Sustainable Technologies – National Research Institute. ISBN: 978-83-7789-204-6.
  • 17. Strączkiewicz Marcin, Piotr Czop, Tomasz Barszcz. 2016. „Supervised and unsupervised learning process in damage classification of rolling element bearings”. Diagnostyka 17(2): 71-80.
  • 18. Wang Jingyue, Haotian Wang, Lixin Guo, Diange Yang. 2018. „Rolling Bearing Fault Detection Using Autocorrelation Based Morpho-logical Filtering and Empirical Mode Decomposition”. Mechanika 24(6): 817-823.
  • 19. Zmarzly Pawel. 2020. „Experimental Assessment of Influence of the Ball Bearing Raceway Curvature Ratio on the Level of Vibration”. Communications 22(4): 103-111. University of Zilina.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72bf75a7-0303-4e0e-b6a4-7e2b53f98213
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.