PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature variation effect on the active vibration control of smart composite beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to their impressive capacity of sensing and actuating, piezoelectric materials have been widely merged in different industrial fields, especially aeronautic and aerospace area. However, in the aeronautic industry, the structures are operating under critical environ-mental loads such as high and very low temperature, which made the investigation of the effect of thermal forces on the piezoelectric struc-tures indispensable to reach the high functionality and performance. The present paper focuses on the effect of thermal loads on the active vibration control (AVC) of structures like beams. For this purpose, a finite element model of composite beam with fully covered piezoelec-tric sensor and actuator based on the well-known high order shear deformation theory is proposed by taking into account the electrical po-tential field and a linear temperature field. Hamilton’s principle is used to formulate the electro-thermo-mechanical governing equations. The negative velocity feedback controller is implemented to provide the necessary gain for the actuator. Different analyses are effectuated to present the effect of the temperature ranging from -70°C to 70°C on the active vibration control of the composite beam.
Rocznik
Strony
166--174
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Structures and Solid Mechanical Laboratory, Mechanical Department, Djillali Liabes University of SidiBel- Abbes, BP 89 Cité Ben M'Hidi Sidi Bel-Abbès 22000, Algéria.
  • Structures and Solid Mechanical Laboratory, Mechanical Department, Djillali Liabes University of SidiBel- Abbes, BP 89 Cité Ben M'Hidi Sidi Bel-Abbès 22000, Algéria.
  • University of Lorraine, Laboratoire d’Etude des Microstructures et de Mécanique des Matériaux, LEM3 CNRS-UMR 7239, GIP-INSIC, 27 Rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France.
  • Structures and Solid Mechanical Laboratory, Mechanical Department, Djillali Liabes University of SidiBel- Abbes, BP 89 Cité Ben M'Hidi Sidi Bel-Abbès 22000, Algéria.
Bibliografia
  • 1. Bansal A., Ramaswamy A. (2002), FE analysis of piezo-laminate composites under thermal loads, J. Intell. Mater. Syst. Struct., 13, 291–301.
  • 2. Beheshti-Aval S.B., Lezgy-Nazargah M., Vidal P., Polit O. (2011), A Refined Sinus Finite Element Model for the Analysis of Piezoelec-tric-Laminated Beams , A Refined Sinus Finite Element Model for the Analysis of Piezoelectric-Laminated Beams, J. Intell. Mater. Syst. Struct., 22, 203–219, https://doi.org/10.1177/1045389X10396955.
  • 3. Bendine K., Boukhoulda F.B., Nouari M., Satla Z. (2016), Active vibration control of functionally graded beams with piezoelectric lay-ers based on higher order shear deformation theory, Earthq. Eng. Eng. Vib., 15, 611–620.
  • 4. Benjeddou A., Andrianarison O. (2005), A thermopiezoelectric mixed variational theorem for smart multilayered composites, Com-put. Struct., 83, 1266–1276.
  • 5. Birman V. (1996), Thermal effects on measurements of dynamic processes in composite structures using piezoelectric sensors, Smart Mater. Struct., 5, 379, https://doi.org/10.1088/0964-1726/5/4/001.
  • 6. Chandrashekhara K., Tenneti R. (1995), Thermally induced vibra-tion suppression of laminated plates with piezoelectric sensors and actuators, Smart Mater. Struct., 4, 281. https://doi.org/10.1088/0964-1726/4/4/008.
  • 7. Chattopadhyay A., Li J., Gu H. (1999), Coupled Thermo-Piezoelectric-Mechanical Model for Smart Composite Laminates, AI-AA J., 37, 1633–1638, https://doi.org/10.2514/2.645.
  • 8. Clark W.W. (1999), Semi-active vibration control with piezoelectric materials as variable-stiffness actuators, Smart Structures and Mate-rials: Passive Damping and Isolation, International Society for Optics and Photonics, 123–130.
  • 9. Crawley E.F., De Luis J. (1987), Use of piezoelectric actuators as elements of intelligent structures, AIAA J., 25, 1373–1385.
  • 10. Elshafei M.A., Alraiess F. (2013), Modeling and analysis of smart piezoelectric beams using simple higher order shear deformation theory, Smart Mater. Struct., 22, 035006.
  • 11. Gay D., Hoa S.V. (2007), Composite Materials : Design and Applica-tions, Second Edition, CRC Press.
  • 12. Gupta V., Sharma M., Thakur N., Singh S.P. (2011), Active vibra-tion control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures, Smart Mater. Struct., 20, 105023. https://doi.org/10.1088/0964-1726/13/1/004 https://doi.org/10.1115/1.3167719 https://doi.org/10.1201/9781420045208
  • 13. Jiang J.P., Li D.X. (2007), A new finite element model for pie-zothermoelastic composite beam, J. Sound Vib., 306, 849–864.
  • 14. Johnson C.D. (1995), Design of Passive Damping Systems, J. Mech. Des., 117, 171–176, https://doi.org/10.1115/1.2836451.
  • 15. Kargarnovin M.H., Najafizadeh M.M., Viliani N.S. (2007), Vibration control of a functionally graded material plate patched with piezoelec-tric actuators and sensors under a constant electric charge, Smart Mater. Struct., 16, 1252.
  • 16. Lam K.Y., Peng X.Q., Liu G.R., Reddy J.N. (1997), A finite-element model for piezoelectric composite laminates, Smart Mater. Struct., 6, 583.
  • 17. Lee H.-J., Saravanos D.A. (1996), Coupled layerwise analysis of thermopiezoelectric composite beams, AIAA J., 34, 1231–1237.
  • 18. Lee H.-J., Saravanos D.A. (1998), The effect of temperature de-pendent material properties on the response of piezoelectric compo-site materials, J. Intell. Mater. Syst. Struct., 9, 503–508.
  • 19. Liew K.M., He X.Q., Ng T.Y., Sivashanker S. (2001), Active control of FGM plates subjected to a temperature gradient: modelling via fi-nite element method based on FSDT, Int. J. Numer. Methods Eng., 52, 1253–1271.
  • 20. Peng X.Q., Lam K.Y., Liu G.R. (1998), Active vibration control of composite beams with piezoelectrics: a finite element model with third order theory., J. Sound Vib., 209, 635–650.
  • 21. Qiu J., Ji H., Zhu K. (2009), Semi-active vibration control using piezoelectric actuators in smart structures, Front. Mech. Eng. China, 4, 242–251.
  • 22. Raja S., Sinha P.K., Prathap G., Dwarakanathan D. (2004), Ther-mally induced vibration control of composite plates and shells with piezoelectric active damping, Smart Mater. Struct., 13, 939.
  • 23. Reddy J.N. (1984), A Simple Higher-Order Theory for Laminated Composite Plates, J. Appl. Mech., 51, 745–752.
  • 24. Sharma A., Kumar R., Vaish R., Chauhan V.S. (2016), Experi-mental and numerical investigation of active vibration control over wide range of operating temperature, J. Intell. Mater. Syst. Struct., 27, 1846–1860.
  • 25. Song, G., Zhou, X., Binienda, W. (2004), Thermal deformation compensation of a composite beam using piezoelectric actuators, Smart Mater. Struct., 13, 30.
  • 26. Tzou H.S., Bao Y. (1995), A theory on anisotropic piezothermoelas-tic shell laminates with sensor/actuator applications, J. Sound Vib., 184, 453–473.
  • 27. Tzou H.S., Gadre M. (1989), Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vi-bration controls, J. Sound Vib., 132, 433–450.
  • 28. Tzou H.S., Tseng C.I. (1990), Distributed piezoelectric sen-sor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach, J. Sound Vib., 138, 17–34.
  • 29. Wang D., Fotinich Y., Carman G.P. (1998), Influence of tempera-ture on the electromechanical and fatigue behavior of piezoelectric ceramics, J. Appl. Phys., 83, 5342, https://doi.org/10.1063/1.367362.
  • 30. Ye Z.-G. (2008), Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications, Else-vier.
  • 31. Zhou X., Chattopadhyay A., Gu H. (2000), Dynamic responses of smart composites using a coupled thermo-piezoelectric-mechanical model, AIAA J., 38, 1939–1948.
  • 32. Zorić N.D., Simonović A.M., Mitrović Z.S., Stupar S.N. (2013), Optimal vibration control of smart composite beams with optimal size and location of piezoelectric sensing and actuation, J. Intell. Mater. Syst. Struct., 24, 499–526.
  • 33. Zou Y., Tong L., Steven G.P. (2000), Vibration-based model-dependent damage (delamination) identification and health monitor-ing for composite structures — a review, J.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72be19af-8068-4041-8185-b250ce4b7219
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.