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1. Introduction – motivation

Reliability, safety and availability of complex and time dynamic 
systems – like mechatronic, communication, space and smart systems 
– has attracted more and more attention in recent years – see, e.g. 
[17]. Systems – we would like to present – work in various and mostly 
adverse operating conditions due to their applications. Therefore it is 
hardly possible to analyse the reliability of an individual system us-
ing prior complex reliability tests, historical pieces of information of 
other similar systems or using expert judgement. Dependability char-
acteristics are surely of our interest as we are concerned of system 
reliability and an availability level. However, the reliability and avail-
ability level of systems under our observation is highly concerned by 
designers plus engineers for condition monitoring and maintenance 
decisions. Based on practical development in this area it emerges that 
condition-based maintenance has become an attractive research area 
in past decades – see, e.g. [18–24]. Moreover, for the equipment under 
our observation there is no actual link, prescription and firm threshold 
for fixed time maintenance intervals specified in standards – both glo-
bal (IEC, ISO) and/or specific ones, like, e.g. MIL-STD, STANAGs, 
etc. The majority of maintenance procedures – specifically the PM 
intervals – are based on historical observations, similar products´ ex-
perience or expert decisions. The firm prescriptions on the fixed time 
PM intervals on the other hand would be obsolete and very rigid in 

terms of current technical needs. Based on the information previously 
introduced, reliability analysis, evaluation and predictive methods for 
reliability assessment need to take into accountactual, recent and real-
time/on-line system conditions during operation. Real-time reliability 
and availability assessment may act as vital role in condition-based 
maintenance which may help to form further maintenance and optimi-
sation decisions – some examples see, e.g. [12]. In real processing of 
data mining there is important need to have also practical applicability 
of proposed theoretical models and ideas emerging from modelling. 
We can find some works on tackling the problems of condition-based 
maintenance in many aspects. For example in [14] there is a prob-
lem of predicting the real-time conditional reliability of an individual 
tool after its performance data was obtained. In [2] there is proposed 
an on-line reliability estimation method of an individual component 
based on degradation signals in which the performance was modelled. 
Products with exponential degradation paths were studied, e.g. in [8], 
while degradation signal modelling based on exponential smoothing 
was modelled, e.g. in [3] and [19] – namely the degradation measures 
with finite duration impulses. In [20] there is considered the exist-
ence of multivariate performance measures, while the proposal forthe 
approach which combines degradation process monitoring with envi-
ronmental variation is presented in [13].

At present there is a tendency to change the format of technical 
maintenance. Preventive maintenance (PM) at fixed intervals has been 
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Celem pracy jest ocena trwałości technicznej układu.  W ocenie statystycznej technicznej trwałości resztkowej, wykorzystywane są 
duże ilości danych tribo-diagnostycznych. Dane te służą jako początkowe źródło informacji.  Dostarczają informacji nt. cząsteczek 
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analizy regresji, logiki rozmytej i procesów dyfuzyjnych-tj.proces Wienera. Śledząc wyniki modelowania możliwe będzie ustalenie 
reguł utrzymania urządzeń zależnie od ich bieżącego stanu technicznego (condition-based maintenance, CBM). Możliwości są 
jednak dużo większe, pozwalając także na planowanie eksploatacji rutynowej i zadań. Wszystkie powyższe kroki prowadzą do 
oszczędności.
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abandoned and condition based maintenance has been introduced 
instead. This trend might be followed only on condition that high-
quality data on system condition is available. In technical literature, 
e.g. [2, 3, 8, 14], there are different ways of using direct and indirect 
diagnostic data. There are introduced the possibilities of vibrodiag-
nostics, thermal radiation, and also tribo-diagnostics there. As for the 
vibrodiagnostics and the thermal radiation, they frequently appear in 
existing publications and scientific papers. Regarding the tribodiag-
nostic data, it has been assessed mainly empirically, restrictedly and 
by specialists.

During the operation of the observed technical equipment in pre-
vious years, a lot of tribodiagnostic data were obtained. The truth 
is that these data have not been used efficiently. The authors of this 
article identified the potential of these data and applied it in further 
analysis. The operation data we possess are firmly given by order to 
collect observations on diagnostics in course of in-service operation – 
we speak about tribo-diagnostic data. These data are obtained thanks 
to parts syntactic methods (Atomic Emission Spectrometry – AES) 
and morphology observation (Laser Net Finder – LNF). From these 
data we are about to present these indicators which are really of use 
in terms of presenting the system real deterioration. No such previ-
ous observations and assessment of operating object were conducted. 
Previous works – see, e.g. [33] – do not speak very deeply about some 
technical observations and tribo-data as to special big systems like 
diesel locomotives, mine lorries and war ships. No such extensive in-
vestigation has been conducted on medium lorries and common off-
road vehicles. What we know for sure is the fact that the tribo data 
have real potential of presenting system condition. It is probably the 
most accurate way of determining system state using non-direct di-
agnostics. Therefore we hope that based on our analytical principles 
– presented here – real optimisation steps in preventive maintenance 
planning, costing and mission planning will be allowed/possible to be 
performed.

There were a few reasons for starting this research. The main rea-
son was obviously to find the way of saving costs during the phase 
of operation and maintenance of the observed technical equipment. 
It is rather clear that both the operation and the maintenance have the 
potential to save costs. The question is how the potential might be 
identified and used further. The technical literature currently available 
shows us that the condition based maintenance is a right alternative. 
However, to introduce this type of maintenance, a certain amount of 
high-quality data as inputs should be available.

Another reason for assessing and searching for RUL (Residual 
Useful Life) was to find a lot more adequate model than the ones 
introduced earlier. The previous models are based on a regression 
analysis and fuzzy logic which has the potential to support regression 
models. What we are trying to do in the paper, is to present a new view 
on the same issue which is supposed to either support the conclusions 
or disprove them.

2. State-of-the-art and literature survey

Some work in the field of oil data assessment has already been 
conducted, see, e.g. [10]. In this paper we introduced some fundamen-
tal data correlation and characteristics.

In the most recent literature publications a lot of space is devoted 
to a condition based maintenance. Therefore we have chosen the latest 
sources dealing with Mean Residual Life (MRL) estimation based on 
data mining, modelling and other approaches. Deterioration and deg-
radation are other areas we are particularly interested in. For example 
the work [10] presents the modelling of residual life (MRL – mean 
residual life) using Proportional Hazards model (PH model) in case 
of indirect condition monitoring, i.e. the equipment state is not de-
terministically known. The other work [23] presents possibilities of 
modelling Remaining Useful Life (RUL) using either a model based 

approach or a data-driven approach. In [7] we suggested the approach 
based on a mathematical model for degradation-based signals from a 
population of components. In work [11] there are methods of estimat-
ing the parameters of condition monitored equipment whose failure 
rate follows the Cox’s time-dependent Proportional Hazards Model. 
The work [28] presents principles of a non-linear model to estimate 
the remaining useful life of a system based on monitored degradation 
signals. Approach looking for balance between costs and preventive 
periodic maintenance is presented e.g. in [21].

A diffusion process with a non-linear drift coefficient with a 
constant threshold was transformed to a linear model with a variable 
threshold to characterize the dynamics and nonlinearity of the deg-
radation process (this new diffusion process contrasts sharply with 
existing models that use a linear drift, and also with models that use a 
linear drift based on transformed data that were originally nonlinear). 
The estimation of remaining useful life, an analytical approximation 
to the distribution of the first hitting time of the diffusion process 
crossing a threshold level is obtained in a closed form. An effort to es-
timate the permanent system deterioration is made in [16]. Therefore 
the level of true degradation determines the appropriate maintenance 
actions which are to be carried out. It is another approach to modelling 
the degradation process by segregating it into manifested (temporary) 
degradation and true (permanent) degradation – equipment degrada-
tion. The estimation of true degradation (with the use of quantitative 
data + imprecise and vague knowledge) is carried out using fuzzy sets 
and fuzzy inference system (FIS) on the observed condition indicators 
and process information. The case study presents steel rolling mill 
equipment – bearings – degradation. In [9]we focused on the develop-
ment of a prognostic model to estimate MRL (Mean Residual Life) of 
Rail Wagon Bearings within certain confidence intervals. This work is 
concerned with the prognosis of mechanical rotating components. It is 
about the construction of a survival curve from censored data derived 
from a nonparametric method introduced by Kaplan and Meier. In 
the work there is also a construction of the degradation curve using 
Proportional Hazard Models introduced by COX with censored data 
used for estimating the survival function.

Our paper, however, is also aimed at looking for the RUL of the 
equipment, but not in the first instance. We would like to get an opti-
mising coefficient for hard time PM as well as tools for mission plan-
ning. For that reason we will use a multivariate function approach 
when determining an optimal threshold for diagnostic indicators. The 
paper presents two main approaches to the data assessment. The first 
one is based on a regression analysis and supported by FIS (Fuzzy 
Inference System). The FIS is a tool which serves either to accept or 
reject our decisions when selecting a regression course model. The 
regression approach shall indicate a possible way of determining the 
ERL (Estimated Residual Life). The second approach introduces an-
other way based on a diffusion process, namely the Wiener process. 
This should help with determining the expected distribution of FHT 
(First Hitting Time) which actually represents the RUL distribution.

3. Objects of diagnostics, oil field data and methods of 
oil assessment

The assumed objects of diagnostics are in our case heavy tracked 
vehicle engines. These engines have not been ready yet in terms of 
design to use an ON-LINE diagnostic system. In practice similar pos-
sibilities of other applications have already been existing. It results 
from the information stated above that we are still supposed to use 
an OFF-LINE engine diagnostics system when sampling lubrication 
fluid at certain intervals, and using known and optimised special tri-
bodiagnostic methods [34]. In our case we use the results and infor-
mation from atomic emission spectrometry. Following this analysis 
we can obtain the information about the presence of the individual 
elements of a specific kind and the amount of elements. When evalu-
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ating data, the information is transformed many times and provides 
only estimated reality which might be different from reality itself. If 
the vagueness in classes distribution is not given by a stochastic char-
acter of measured characteristics, but by the fact that the exact line 
among states classes does not exists, it will be later on good to apply 
a fuzzy set theory and adequate multi-criteria fuzzy logic. However, 
we cannot identify the real origin of the respective elements – e.g. as 
results of fatigue, cutting or sliding. Therefore in our further research 
we try to identify where these elements might come from. We base 
our assumptions on the idea to increase the potential for maintenance 
optimisation inputs and cost benefit analysis inputs. We can perform a 
good analysis as we have a statistically significant set of data. Taking 
into account the amount of data, the results are believed to be valuable 
and statistically reliable. We concentrate on Fe particles contents and 
their presence in the engine of a heavy tracked vehicle.

4. Application of the regression approach

In this part we present the outcomes of regression functions utili-
zation to describe the data forming and course development. We con-
centrate only on Fe particles and one vehicle engine type, namely a 
heavy off-road tracked vehicle. In some previous works, see, e.g. [15 
and 34] several outcomes have already been presented. Therefore our 
results here are based only on the most likely regression courses. 

Consequently, the dependencies such as a linear, parabolic and 
base function – a square root plus confidence intervals in all instances 
will be applied. This will be supported by FIS. The data used for the 
analysis are listed in Table 1.

In view of their random character, a random vector X = (X1,…,Xk) 
represents independent variables and a dependent variable is represent-
ed by a random variable Y.

When describing and examining the dependence of Y on X, we 
use a regression analysis, and this dependence is expressed by the fol-
lowing regression function:

	 y = φ(x, β) = E(Y|X = x),	 (1)

where x = (x1,….,xk) is vector of numerical variables, y is a de-
pendent variable, β = (β1,…,βm) is vector of regression coefficientsβj.

For our data we will look for a regression function in a linear form 
and we will apply a linear regression model:

	 y fj j
j
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where fj(x) are well-known functions where β1,…,βm are not in-
volved.

For the data we will select gradually the following regression 
functions for individual item:

m–– =2, f1(x)=1, f2(x)=x, regression function: y =β1+β2x
m–– =3, f1(x)=1, f2(x)=x, f3(x)=x2, regression function: 
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m–– =2, f1(x)=1, f2(x)=x1/2, regression function: y=β1+β2x1/2

The coefficient of determination (R2) will show its suitability for 
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The outcomes from the regression analysis for group of vehicles 
of the same type are presented below in figures 1–3.

Table 1. Input data of Fe particles

Sample / Mh Fe particles (ppm) Sample / Mh Fe particles (ppm)

1/0 17.57 7/46 15.84

2/8 20.88 8/57 16.41

3/11 15.77 9/64 23.15

4/22 19.58 10/72 23.94

5/26 20.53 11/84 20.86

6/35 12.73 12/95 17.59

Fig. 1.	 Linear dependence of Fe particles course (for individual vehicle) on 
operating time in Mh

Fig. 2.	 Quadratic dependence of Fe particles course (for individual vehicle) 
on operating time in Mh

Fig. 3.	 First base function dependence of Fe particles course (for individual 
vehicle) on operating time in Mh
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5. Utilisation Of Fuzzy Inference System (FIS) to support 
and to compare with Regression Approach

A Fuzzy Inference System (FIS) is based on the terms a fuzzy 
set and a fuzzy relation which were introduced by Lotfi A. Zadeh 
in 1965. The fuzzy set is one of possible generalizations of the term 
set. The fuzzy set is a pair (U, μA) where U is a universal set and 
μA: U → 〈0,1〉 is a membership function assigning the elements from 
U to a fuzzy set A. The membership is marked with μA(x).

Nowadays one of the most widely used applications is a Fuzzy 
Inference System – FIS (once used as a “fuzzy regulator” term). Two 
basic types of the FIS are used, and they are Mamdami and Sugeno 
[22 and 31]. Each FIS consists of input and output variables and FIS 
rules. For each FIS we specify:

the number of input and output variables,––
for each input and output the number of predefined values (lin-––
guistics values) in the form of fuzzy sets, 
FIS rules described by predefined values.––

We do not often expect a fuzzy set to be the FIS output, but we 
wish to get a single value z0∈Z, i.e. we want to defuzzify the FIS out-
put. The centroid method is one of the most frequently used defuzzica-
tion methods. The FIS specified this way is called Mamdani FIS [22].

If we do not know how the process works (i.e. the FIS rules cannot 
be set), but the sufficient amount of input and output data is available, 
we can use the modification of Mamdani-FIS Sugeno (Takagi-Sugeno 
FIS) [22 and 31].

When looking for FIS correlation between output values and in-
put ones as for an unknown process, the method used a lot more fre-
quently is the Sugeno FIS method which is in fact a Mamdani FIS 
modification. In order to find a relevant FIS, we use the data that 
serves as a background for the input and output values of the process. 
In most cases these values are a subset of real numbers, and therefore 
the inputs and outputs are in a numerical form. The input variables 
are similar to Mamdani FIS. The output variables Zj are in constant 
or linear forms.

	 Zj = aj or Zj = αj+β1,jx1+β2,jx2+…+βn,jxn,	 (4)

where aj, bi,ji= 1, 2, …, n, j = 1, 2, …, k are suitable constants, k is the 
number of rules in the FIS model, and n-tuple (x1, x2,…, xn) consists 
of n input variables to the FIS (model). Sugeno FIS output is the value 
of weighted average Zj where the weight is obtained by comparing the 
input (x1, x2,…,xn) with predefined input values [22 and 31].

To find a suitable Sugeno FIS, which describes the selected data, 
it is appropriate to divide the data into tuning and checking data. We 
find the FIS that corresponds to the tuning data best. The tuning part 
of data is divided into smaller parts, and predefined input (output) 
values and the rules describing relationship between relevant inputs 
and outputs are assigned to each part. There are two basic ways of 
dividing the data: 

dividing the area (which includes turning data) into smaller ––
parts. A fuzzy set is assigned to each part, and their combina-
tion is used for creating rules.
applying clustering methods to find clusters in data. One rule is ––
made for each cluster.

After selecting the number of fuzzy sets (linguistics values) and 
rules, we search for appropriate parameters (aj, bi,j) using output vari-
ables Zj. These parameters were found through a neural network. The 
tuning itself results in setting parameters for the FIS to describe as-
signed tuning data as well as possible. The accuracy is verified by 
calculating the output values from the test data by the FIS, and then 
they will be compared with the original output of the test data. The 
design, tuning and selection of the FIS were performed in MATLAB 
(Version 5.3) – FuzzyToolbox.

The FIS is applied here in order to support our regression courses 
and principles. When looking for a correlation between data, fuzzy 
model results and regression results, we concentrated on quadratic and 
first base function courses only.Following the results of the regression 
analysis, we decided in favour ofthese two models, since they have 
higher R2 coefficient of determination and therefore the most suitable 
correlation and inference. We also choose a more strict condition in 
the form of a mean value of the observed object (vehicles group). The 
outcomes are presented in Figures 4 and 5.

It is remarkable that the expected regression courses of Fe – quad-
ratic and first base – suit also the FIS.

6. Estimation of RUL based on a regression function

It is worthy of attention that a Fe particles generation based on 
oil field data might have a linear, a quadratic and a base functions 
course. This correlation and inference outcomes are based on the anal-
ysis performed above while using a regression and fuzzy approach. 
The linear course seems to be the best inference for this particular 
vehicle engine type. Therefore we take into consideration the linear 
dependence course. Moreover, we have available data obtained from 
a similar engine laboratory life test. Such test simulated real engine 
operation and was performed as an accelerated test until the engine 
was destroyed. These data and the engine serve as a reference item 
for a further analysis and comparison. Therefore we decided to try 
to estimate the residual life based on the reference engine and all the 
outcomes presented above. We believe that the capability to “read the 
diagnostic data” might help with mission planning, maintenance op-
timisation, or, e.g. in a cost benefit analysis. Some sources of inspira-
tion can be found, for example, in [1, 4, 5, 16, 25, 26, 27, 29, 30, 32, 
35]. The interval estimation of residual life was made on the basis of 

Fig. 4. Comparison of quadratic Fe course and fuzzy model

Fig. 5. Comparison of first base function Fe course and fuzzy model
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the Fe particles analysis and the results of the accelerated life test. Its 
value is rated on a scale of 220 Mh to 257 Mh. It results from the set 
interval and the real value declared for oil change that in practice the 
oil is changed when its durability is higher than 50%.In Figure 6 there 
is a graphical presentation of the RUL estimation.

7. Utilization of the Wiener process

As it has been mentioned before, the data are available in a big 
amount – it is a statistically important set. The data is collected at 
intervals and under conditions determined by a methodology which 
includes: 

homogenous time intervals given by technical equipment mileage, ––
oil temperature and right oil mixing,––
the same place of sample collection, ––
the same way of performing the tribo analysis after the sampling.––

When applying the Wiener process, we use some outcomes from a 
regression analysis. These regression outcomes are re-calculated into 
a usable form. The example of the data form is in Table 2.

We assume that the case we observe is a stochastic process with 
time dependence. The generation of Fe particles is time dependant. 
Therefore the application of a diffusion process seems to be perfectly 
adequate. Due to the normal distribution of a random variable and 
its application capabilities, the Brownian motion might be used uni-
versally. The application of the Brownian motion can be found in 
many areas. The Brownian motion is usually modelled with differen-
tial equations. We select one specific example of diffusion processes 
and that is the Wiener process [37]. The rules of the general Wiener 
process might be specified as follows. A real stochastic process {W(t) 
t∈〈0; +∞)} in a probability space (Ω, A, P) will be called the Brown-
ian motion or the Wiener process if the following applies:

 1.	 W(0) = 0,
 2.	 W(t) −W(s) has N(0, t − s) distribution for t >s ≥ 0,
 For arbitrary 0 < 3.	 t1< t2<· · · <tnincrements W(t1), W(t2) −W(t1),W(t3) 
−W(t2), . . . ,W(tn) −W(tn−1), W(t) trajectories are mutually inde-
pendent random variables and continuous almost everywhere.

Next, it applies that:
 1.	 E[W(t)] = 0 for t ≥0
 Var [1.	 W^2(t)] = t for t≥0
The Wiener process represents one possible form of diffusion 

processes. It is actually the integral of what in practical applications is 
called a white noise. The Wiener process with a drift will be used in 
our application. The initial mean value (drift) is β1 and standard devia-
tions for each time increment have been previously calculated – see 
Table I. For our model we apply the Wiener process with a drift given 
by a stochastic differential equation:

	
dY t dt dW t

t
( ) ( )

( )
= ⋅ +

⋅
µ

σ

	
(4)

where dW(t) is increment of the Wiener process and dt is increment of 
time, σ is a standard deviation (either of an individual or a mean value), 
µ is a mean value, t is an instant of time, process initial value Y(0) = β1. 
Time increment for modelling was 0.15  Mh. When modelling and 
simulating, we apply the course of an individual and a mean value, as 
shown in Fig. 7 and 8. The critical value of particles amount is 50.

We take into account the 95% interval of trajectories which 
achieve a critical value 50. The vertical line 200 shows a determined 
interval of PM. These intervals are for an individual and a mean value 
and are put in Figure 9 and Figure 10.

In order to determine the First Hitting Time (FHT) distribution 
of an individual and a mean value, we set histograms and performed 
tests for a presumed type of distribution. The expected types of prob-
ability density distribution such as Gamma (full/firm line), LogNorm 
(dashed line – overcovered by IGD), Inverse Gaussian (IGD) – dotted 

Fig. 6. RUL estimation based on regression

Fig. 7. Course of Wiener process simulation for an individual value

Fig. 8. Course of Wiener process simulation for mean value

Table 2. Input data of Fe particles – example

Sample / Mh Fe particles 
(ppm)

Standard devia-
tion mean value

Standard de-
viation individual 

value

1/0.15 13.71158 0 4.753368309

2/0.30 13.72016 0.001014608 4.753368417

3/0.45 13.73055 0.002029216 4.753368742

4/0.60 13.74004 0.003043824 4.753369284

5/0.75 13.74953 0.004058431 4.753370042

6/0.90 13.75902 0.005073039 4.753371016
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line), Normal (dash and dotted line) or Weibull’s were not proved. 
The courses of these tested distributions are shown in Fig. 7 and Fig. 
8. We expect then to obtain the FHT distribution only in the form of 
an empiric distribution function.

8. Estimation of RUL based on the Wiener process

The tested values reached for the individual value the follow-
ing limits: a minimum value = 134 Mh, a lower confidence interval 
2.5%  =  265 Mh, an upper confidence interval 97.5%  =  524  Mh, a 
mean value = 382 Mh, median = 378 Mh, maximum = 887 Mh.

As to the mean value, the following limits were achieved: a mini-
mum value = 258 Mh, a lower confidence interval 2.5% = 315 Mh, an 
upper confidence interval 97.5% = 480 Mh, a mean value = 385 Mh, 
Median = 381 Mh, Maximum = 746 Mh.

It follows from the results stated above that the mean value is 
more or less the same, but the lower threshold of confidence intervals 
is not. However, the lower confidence intervals are interesting for us 
in order to determine the possible beginning of the PM interval. But if 
we used the mean value, it would be sufficiently far from the original/
fixed PM interval. On the basis of the results we could work with a 
conservative version and set a new PM interval using the lowest value 
of a lower threshold of a confidence interval. This would be 265 Mh 
(an individual value). If we were for a benevolent alternative, we 
could rely on the mean value and set the PM interval at 380 Mh (more 
or less the same for both the individual and the mean value).

When planning a mission, we could work with versions that if 
common operating conditions were observed, a vehicle could be oper-
ated with one oil filling theoretically up to the upper confidence limit 
97,5%. Considering conservative or benevolent versions, it would be 
480 Mh, or 520 Mh.

9. Discussion

Since we have worked with two approaches to one problem, it 
is always interesting to compare the results. As we can see, the ob-
tained values of RUL estimations do not differ when working with 
conservative estimations. The procedure based on the Wiener process, 
however, is somewhat clearer and brings better analytical results. The 
form of RUL estimation is better to determine. It is also much easier 
to introduce other forms of a particle production course, not only the 
linear one.  Following this assumption – applying a quadric, or a base 
function course, we can develop our further procedure and research. 
Assessing available oil data, however, has a lot greater potential.

10. Conclusion

In this article we have introduced possible approaches to model-
ling indirect diagnostic measures. Our intention was to introduce a 
coherent research form when dealing with indirect oil diagnostic data 
and analyze it with different approaches / ways. Owing to the different 
approaches, we were able to present quantitative RUL values which 
are in view of PHM or CBM very important.

The achieved results complement the set of approaches to the 
indirect observation of a technical condition. Following the conclu-
sions of modelling with the Wiener process, the results of previous 
approaches might be completed when searching for: 

optimum interval PM,––
recommended/allowed time for mission completion,––
optimizing dependencies of life cycle cost analyzing.––

The approach introduced above opens the possibilities of ana-
lyzing other essential diagnostic indicators. The setting of the time 
derived from the histogram and pdf course should be as accurate as 
possible and undistorted.

Fig. 9. Confidence interval thresholds – 95% for an individual value

Fig. 12. Course of FHT pdf for a mean value

Fig. 11. Course of FHT pdf for an individual value

Fig. 10. Confidence interval thresholds – 95% for a mean value
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In our further analysis we are going to develop the Wiener ap-
proach even more and complement it with other approaches like ARI-
MA or ARMA methods.

Acknowledgement: This paper has been prepared with the great support of the project for the institutional development of K-202 University of 
Defenceand with support of the project of Ministry of Defence of the Czech Republic – BOPROS nr. OFVTUV2013002.

Bibliography

1. Bartlett LM, Hurdle EE, Kelly EM, Intergrated System Fault Diagnostics Utilising Diagraph and Fault Tree-based Approaches 2009; 
Reliability Engineering and System Safety, 9(94), 1371-1380.

2. Chinnam RB, On-line reliability estimation for individual components using statistical degradation signal models. Quality and Reliability 
Engineering International 2002; 18, 53-73.

3. Chinnam RB. On-line reliability estimation of individual components, using degradation signals. IEEE Transactions on Reliability 1999; 
4(48), 403-412.

4. Cornak S. Selected Problems of Drivers Microclimate. Proc. International Conference Transport Means 2009; Kaunas: University of Kaunas, 
124-127.

5. Cornak S, Skolil J. The Selected Aspects of Life Fluids Evaluation. Proc. International Conference on Military Technologies, ICMT 2009, 
Brno: UO, 39-45.

6. Edleston OSST, Bartlett LM. A Tabu search algorithm applied to the staffing roster problem of Leicestershire police force. Journal of the 
Operational Research Society 2012; 4(63), 489-496.

7. Gebraeel N, Pan J. Prognostic Degradation Models for Computing and Updating Residual Life Distributions in a Time-Varying Environment. 
IEEE Transaction on Reliability 2008; 4(57), 539-550.

8. Gebrael NZ, Lawley MA, Li R, Ryan JK, Residual-life distribution from component degradation signals: A Bayesian approach 2005; IIE 
Transactions, 37, 543-557.

9. Ghasemi A, Hodkiewicz MR. Estimating Mean Residual Life for a Case Study of Rail Wagon Bearings. IEEE Transaction on Reliability 
2012; 3(61), 719-730.

10. Ghasemi A, Soumaya SY, Ouali MS. Evaluating the Reliability Function and the Mean Residual Life for Equipment With Unobservable 
States. IEEE Transaction on Reliability 2010; 2(59), 426-439.

11. Ghasemi A, Yacout S, Ouali MS. Parameter Estimation Methods for Condition-Based Maintenance With Indirect Observations. IEEE 
Transaction on Reliability 2010, 2(59), 426-439.

12. Jardine AKS, Lin D, Banjevic D. A review on machinery diagnostics and prognostics implementing condition-based maintenance 2006. 
Mechanical Systems and Signal Processing, 7(20), 1483-1510.

13. Kharoufeh JP, Cox SM. Stochastic models for degradation-based reliability. IIE Transactions 2005; 37, 533-542.
14. Kim YS, Kolarik WJ. Real-time condition reliability prediction from on-line tool performance data. International Journal of Production 

Research 1992; 8(30), 1831-1844.
15. Koucky M, Valis D. Suitable approach for non-traditional determination of system health and prognostics. Zeszyty naukowe 2011; 1(159), 

123-134.
16. Kumar EV, Chaturvedi SK, True degradation estimation of industrial equipment with fuzzy sets: a case study. Proceedings of the Institution 

of Mechanical Engineers Part O – Journal of Risk and Reliability 2009; 2(223), 167-179.
17. Labeau PE, Smidts C, Swaminathan S. Dynamic reliability: Towards an integrated platform for probabilistic risk assessment. Reliability 

Engineering and System Safety 2010; 3 (68), 219-254.
18. Li W, Pham H, An inspection-maintenance model for systems with multiple competing processes. IEEE Transactions on Reliability 2005; 

2(54), 318-327.
19. Lu H, Kolarik WJ, Lu SS. Real-time performance reliability prediction. IEEE Transactions on Reliability 2001; 4(50), 353-357.
20. Lu S, Lu H, Kolarik WJ. Multivariate performance reliability prediction in real-time. Reliability Engineering and System Safety 2001; 72, 

39-45.
21. Maillart LM, Pollock SM. Cost-optimal condition-monitoring for predictive maintenance of 2-phase systems. IEEE Transactions on 

Reliability 2002; 3(51), 322-330.
22. Mamdani EH, Applications of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 12(26), 

1182-1191.
23. Medjaher K, Tobon-Mejia DA, Zerhouni N. Remaining Useful Life Estimation of Critical Components With Application to Rearing. IEEE 

Transaction on Reliability 2012; 2(61), 292-302.
24. Park KS. Condition-based predictive maintenance by multiple logistic function. IEEE Transactions on Reliability 1993; 4(42), 556-560.
25. Rak J, Pietrucha K. Risk in drinking water quality control. Przemysl Chemiczny 2008; 5(87), 554-556.
26. Revie M, Bedford T, Walls L. Supporting Reliability Decisions During Defence Procurement Using a Bayes Linear Methodology. IEEE 

Transactions on Engineering Management 2011; 4(58), 662-673.
27. Shafti F, Bedford T, Deleris LA, Hosnins JRM, Shen H, Walls L. Service operation classification for risk management. IBM Journal of 

Research and Development 2010; 3(54), 662-673.
28. Si XS, Wang W, HuCh H, Zhou DH, Pecht MG. Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process. 

IEEE Transaction on Reliability 2012; 1(61), 50-67.
29. Stodola J, Stodola P. Mechanical System Wear and Degradation Process Modelling. Transactions of Famena 2010; 4(34), 19-32.



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 2, 2014210

Science and Technology

30. Stodola P, Jamrichova Z, Stodola J. Modelling of Erosion Effects on Coating of Military Vehicles Components. Transactions of Famena 
2012; 3(36), 33-44.

31. Sugeno M. Industrial applications of fuzzy control. Elsevier Science Pub. Co., 1985.
32. Titrou A, Bedford T, Walls L. Bayes geometric scaling model for common cause failure rates.Reliability Engineering and System Safety 

2010; 2(95), 70-76.
33. Toms LA, Toms AM. Machinery Oil Analysis - a Guide for Maintenance Managers, Supervisors and Technicians. Society of Tribologists and 

Lubrication Engineers 2008.
34. Vališ D, Koucký M, Žák L. On approaches for non-direct determination of system deterioration. Eksploatacja i Niezawodnosc – Maintenance 

and Reliability 2012; 1(14), 33-41.
35. Valis D, Vintr Z, Koucky M. Contribution to highly reliable items' reliability assessment. Reliability, Risk and Safety: Theory and Applications, 

Proceedings of the European Safety and Reliability Conference, ESREL 2009; Prague, Czech Republic, 2010; 1-3: 1321-1326.
36. Yang SK. A condition based failure-prediction and processing-scheme for preventive maintenance. IEEE Transactions on Reliability 2003; 

3(52), 373-383.

David Valis
Department of Combat and Special Vehicles
Faculty of Military Technologies
University of Defence
Kounicova 65, 662 10 Brno, Czech Republic
E-mail: david.valis@unob.cz

Libor Zak
Department of Applied Mathematics
Faculty of Mechanical Engineering
Brno University of Technology
Technicka 2896/2, 616 69 Brno, Czech Republic
E-mail: zak.l@fme.vutbr.cz

Ondrej Pokora
Department of Mathematics and Statistics
Faculty of Natural Sciences
Masaryk University
Kotlarska 267/2, 611 37 Brno, Czech Republic
E-mail: pokora@math.muni.cz


