PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A solution-processable small-organic molecules containing carbazole or phenoxazine structure as hole-transport materials for perovskite solar cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three low molecular weight compounds bearing carbazole units (1,6-di{3-[2-(4-methylphenyl)vinyl]carbazol-9-yl}hexane and 9,9'-di{6-[3-(2-(4-methylphenyl)vinyl)-9-carbazol-9-yl]hexyl}-[3,3']bicarbazole) and phenoxazine structure (10-butyl-3,7-diphenylphenoxazine) were tested as hole-transporting materials in perovskite solar cells. Two of them were successfully applied as hole transporting layers in electroluminescent light emitted diodes. The examined compounds were high-thermally stable with decomposition temperature found at the range of 280–419 °C. Additionally, DSC measurement revealed that they can be converted into amorphous materials. The compounds possess adequate ionization potentials, to perovskite energy levels, being in the range of 5.15–5.36  eV. The significant increase in power conversion efficiency from 1.60% in the case of a device without hole-transporting layer, to 5.31% for device with 1,6-di{3-[2-(4-methylphenyl)vinyl]carbazol-9- yl}hexane was observed.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25 St., 30-059, Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25 St., 30-059, Krakow, Poland
  • Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254, Kaunas, Lithuania
  • Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254, Kaunas, Lithuania
  • Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu Plentas 19, LT50254, Kaunas, Lithuania
  • Institute of Chemistry, University of Silesia, 9 Szkolna St., 40-006, Katowice, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25 St., 30-059, Krakow, Poland
Bibliografia
  • [1] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2 (2012) 1–7.
  • [2] F.A. Roghabadi, N. Ahmadi, V. Ahmadi, A. Di Carlo, K.O. Aghmiuni, A. Shokrolahzadeh, T. Farzaneh, S. Ghoreishi, M. Payandeh, N. Mansour, R. Fumani, Bulk heterojunction polymer solar cell and perovskite solar cell: concepts, materials, current status, and opto-electronic properties, Sol. Energy 173 (2018) 407–424.
  • [3] M. Nazim, S. Ameen, M.S. Akhtar, M.K. Nazeeruddin, H.-S. Shin, Tuning electronic structures of thiazolo[5,4-d]thiazole-based hole transporting materials for efficient perovskite solar cells, Sol. Energy Mater Sol. 180 (2018) 334–342.
  • [4] P. Vivo, J.K. Salunke, A. Priimagi, Hole-transporting materials for printable perovskite solar cells, Materials 10 (2017) 1087–1132.
  • [5] X. Yang, H. Wang, B. Cai, Z. Yu, L. Sun, Progress in hole-transporting materials for perovskite solar cells, J. Energy Chem. 27 (2018) 650–672.
  • [6] X. Zhao, M. Wang, Organic hole-transporting materials for efficient perovskite solar cells, Mater. Today Energy 7 (2018) 208–220.
  • [7] Z.-U. Rehman, A. Saeed, M. Faisal, Synthesis and characterization of thiophene-mediated hole transport materials for perovskite solar cells, Synth. Met. 214 (2018) 54–68.
  • [8] P. Agarwala, D. Kabra, A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering, J. Mater. Chem. A 5 (2017) 1348–1373.
  • [9] K. Gawlinska, A. Iwan, Z. Starowicz, G. Kulesza-Matlak, K. Stan-Glowinska, M. Janusz, M. Lipinski, B. Boharewicz, I. Tazbir, A. Sikora, Searching of new, cheap, air- and thermally stable hole transporting materials for perovskite solar cells, Opto-Electron. Rev. 25 (2017) 274–284.
  • [10] R. Rajeswari, M. Mrinalini, S. Prasanthkumar, L. Giribabu, Emerging of inorganic hole transporting materials for perovskite solar cells, Chem. Rec. 17 (2017) 681–699.
  • [11] C. Chen, W. Zhang, J. Cong, M. Cheng, B. Zhang, H. Chen, P. Liu, R. Li, M. Safdari, L. Kloo, L. Sun, Cu(II) Complexes as p-type dopants in efficient perovskite solar cells, ACS Energy Lett. 2 (2017) 497–503.
  • [12] X. Yang, H. Wang, B. Cai, Z. Yu, L. Sun, Progress in hole-transporting materials for perovskite solar cells, J. Energy Chem. 27 (2018) 650–672.
  • [13] D. Tavgeniene, L. Liu, G. Krucaite, D. Volyniuk, J.V. Grazulevicius, Z. Xie, B. Zhang, S. Grigalevicius, Phenylvinyl-substituted carbazole twin compounds as efficient materials for the charge-transporting layers of OLED devices, J. Electron. Mater. 44 (2015) 4006–4011.
  • [14] X.-F. Zhang, C. Liu, L. Zhang, J. Wu, B. Xu, Triazatetrabenzcorrole (TBC) as efficient dopant-free hole transporting materials for organo metal halide perovskite solar cells, Dye. Pigment. 137 (2017) 208–213.
  • [15] V. Vaitkeviciene, A. Kruzinauskiene, S. Grigalevicius, J.V. Grazulevicius, R. Rutkaite, V. Jankauskas, Well-defined [3,3’]bicarbazolyl-based electroactive compounds for optoelectronics, Synth. Met. 158 (2008) 383–390.
  • [16] H. Xu, P. Sun, K. Wang, X. Zhang, J. Ren, T. Yang, X. Zhang, Y. Hao, H. Wang, B. Xu, W.-Y. Wong, Solution-processed blue and blue-green phosphorescent organic light-emitting devices using iridium(III) complexes based on 9-(6-(4-phenyl-1H-1,2,3-triazol-1-yl)hexyl)-9H-carbazole ligand, Dye. Pigment. 134 (2016) 148–154.
  • [17] R. Griniene, L. Liu, D. Tavgeniene, D. Sipaviciute, D. Volyniuk, J.V. Grazulevicius, Z. Xie, B. Zhang, K. Leduskrasts, S. Grigalevicius, Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs, Opt. Mater. 51 (2016) 148–153.
  • [18] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films 361–362 (2000) 527–532.
  • [19] E. Miyamoto, Y. Yamaguchi, M. Yokoyama, Denshishashin Gakkai-shi (Electrophotography), 28, 1989, pp. 364.
  • [20] N.A. Kukhta, D. Volyniuk, L. Peciulyte, J. Ostrauskaite, G. Juska, J.V. Grazulevicius, Structure–property relationships of star-shaped blue-emitting charge-transporting 1,3,5-triphenylbenzene derivatives, Dye. Pigment. 117 (2015) 122.
  • [21] S. Agarwal, P.R. Nair, Device engineering of perovskite solar cells to achieve near ideal efficiency, Appl. Phys. Lett. 107 (2015), 123901.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72b28a17-3009-4ee0-8b04-a449219fa0c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.