PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Almost sure limit theorems for semi-selfsimilar processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An integral analogue of the almost sure limit theorem is presented for semi-selfsimilar processes. In the theorem, instead of a sequence of random elements, a continuous time random process is involved; moreover, instead of the logarithmical average, the integral of delta-measures is considered. Then the theorem is applied to obtain almost sure limit theorems for semistable processes. Discrete versions of the above theorems are proved. In particular, the almost sure functional limit theorem is obtained for semistable random variables.
Rocznik
Strony
241--255
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
  • Faculty of Informatics, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
autor
  • Institute of Mathematics, Maria Curie-Skłodowska University, pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland
Bibliografia
  • [1] P. Becker-Kern, Almost sure limit theorems of mantissa type, submitted to Acta Math. Hungar., 2005.
  • [2] I. Berkes and E. Csáki, A universal result in almost sure central limit theory, Stochastic Process. Appl. 94 (1) (2001), pp. 105-134.
  • [3] I. Berkes, E. Csáki, S. Csörgő and Z. Megyesi, Almost sure limit theorems for sums and maxima from the domain of geometric partial attraction of semistable laws, in: Limit Theorems in Probability and Statistics, Vol. I, I. Berkes, E. Csáki and M. Csörgő (Eds.), János Bolyai Math. Soc., Budapest 2002, pp. 133-157.
  • [4] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
  • [5] G. A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), pp. 561-574.
  • [6] A. N. Chuprunov and I. Fazekas, Integral analogues of almost sure limit theorems, Period. Math Hungar. 50 (1-2) (2005), pp. 61-78.
  • [7] R. M. Dudley, Real Analysis and Probability, Wadsworth & Brooks/Cole, Pacific Grove, CA, 1989.
  • [8] I. Fazekas and Z. Rychlik, Almost sure functional limit theorems, Ann. Univ. Mariae Curie-Skłodowska Sect. A 56 (2002), pp. 1-18.
  • [9] I. Fazekas and Z. Rychlik, Almost sure central limit theorems for random fields, Math. Nachr. 259 (2003), pp. 12-18.
  • [10] I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes, W. B. Saunders Co., Philadelphia-London-Toronto 1969.
  • [11] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, Massachusetts, 1954.
  • [12] V. M. Kruglov, A certain extension of the class of stable distributions (in Russian), Teor. i Veroyatnost. i Primenen. 17 (4) (1972), pp. 723-732.
  • [13] M. T. Lacey and W. Philipp, A note on the ulmost sure central limit theorem, Statist. Probab. Lett. 9 (2) (1990), pp. 201-205.
  • [14] P. Lévy, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris 1937.
  • [15] P. Major, Almost sure functional limit theorems, Part I. The general case, Studia Sci. Math. Hungar. 34 (1998), pp. 273-304.
  • [16] P. Major, Almost sure functional limit theorems, Part II. The case of independent random variables, Studia Sci. Math. Hungar. 36 (2000), pp. 231-273.
  • [17] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge 1999.
  • [18] P. Schatte, On strong versions of the central limit theorem, Math. Nachr. 137 (1988), pp. 249-256.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72b10859-b0eb-4e0e-a236-eb8a80408a7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.