PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D geological and potential field modelling of the buried alkaline-carbonatite Tajno massif (East European Craton, NE Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Geological and geophysical data are used to model the 3D geometry of the Tajno alkaline massif intruded during the Early Carboniferous in NE Poland. The massif consists mainly of pyroxenite, mafic intrusive and volcanic rocks, and carbonatites containing rare earth elements (REE) and other important mineral resources. The deep structure of the massif, and its thickness, shape and internal structure, has been poorly known making it impossible to properly search for useful mineral resources. In order to better constrain the distribution, geometries and relationships between the main rock types, a 3D geological model of the Tajno massif has been developed. The input data comprise a set of geological cross-sections built on an updated subsurface geological map, and borehole, magnetic and gravity data. 3D Geomodeller software was applied to integrate geological data into a coherent and geologically feasible model of the massif using geostatistical analysis. The magnetic and gravity data were used to constrain the 3D geological modelling results. The final 3D model is thus compatible with the geological data, as well as with geophysical data. The most important conclusions obtained from the modelling are as follows: (i) a higher proportion of nepheline syenites or tuffs and pyroclastic breccia in relation to pyroxenites; and, (ii) a smaller proportion of chimney breccia relative to chimney-hosted tuffs and volcanic breccia than proposed in previous geological interpretation. These results are important for further studies on the evolution of the Tajno massif and its associated carbonatites.
Rocznik
Strony
art. no. 10
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Blakely, R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge.
  • 2. Bogdanova, S., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L., Kurlovich, D., 2015. Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research, 259: 5-33.
  • 3. Calcagno, P., Chiles, J P., Courrioux, G., Guillen, A., 2008. Geological modelling from field data and geological knowledge: Part I, Modelling method coupling 3D potential-field interpolation and geological rules. Physics of the Earth and Planetary Interiors, 171: 147-157.
  • 4. Cieśla, E., Kosobudzka, I., 1992. Geophysical studies of the Tajno massif. Prace Państwowego Instytutu Geologicznego, 139: 15-18.
  • 5. Demaiffe, D., Wiszniewska, J., Krzemińska, E., Williams, I.S., Stein, H., Brassinnes, S., Ohnenstetter, D., Deloule, E., 2013. A hidden alkaline and carbonatite province of early Carboniferous age in northeast Poland: zircon U-Pb and pyrrhotite Re-Os geochronology. The Journal of Geology, 121: 91-104.
  • 6. Guillen, A., Calcagno, P., Courrioux, G., Joly, A., Ledru, P., 2008. Geological modelling from field data and geological knowledge, Part II. Modelling validation using gravity and magnetic data inversion. Physics of the Earth and Planetary Interiors, 171: 158-169.
  • 7. Huestis, S.P., Ander, E., 1983. IDB2 - A Fortran program for computing extremal bounds in gravity data interpretation. Geophysics, 47: 999-1010.
  • 8. Królikowski, C., Petecki, Z., 1995. Gravimetric Atlas of Po land. Państwowy Instytut Geologiczny, Warszawa.
  • 9. Krystkiewicz, E., Krzemiński, L., 1992. Petrology of the alkaline-ultrabasic Tajno massif. Prace Państwowego Instytutu Geologicznego, 139: 19-35.
  • 10. Krzemińska, E., Krzemiński, L., Petecki, Z., Wiszniewska, J., Salwa, S., Żaba, J., Gaidzik, K., Williams, I.S., Rosowiecka, O., Taran, L., Johansson, L., Pécskay, Z., Demaiffe, D., Grabowski, J., Zieliński, G., 2017. Geological map of crystalline basement in the Polish part of the East European Platform 1:1 000 000. Państwowy Instytut Geologiczny, Warszawa.
  • 11. Kubicki, S., 1992. An outline of geologi cal structure of the Tajno massif. Prace Państwowego Instytutu Geologicznego, 139: 7-18.
  • 12. Kubicki, S., Ryka, W., 1982. Geological Atlas of Crystalline Basement in Polish Part of the East-European Platform, 1:500 000. Instytut Geologiczny, Warszawa.
  • 13. Lajaunie, C., Courrioux, G., Manual, L., 1997. Foliation fields and 3D cartography in geology: principles of a method based on potential interpolation. Mathematical Geology, 29: 571-584.
  • 14. Martelet, G., Calcagno, P. Gumiaux, C., Truffert, C., Bitri, A., Gapais, D., Brun, J.P., 2004. Integrated 3D geophysical and geological modelling of the Hercynian Suture Zone in the Champtoceaux area (south Brittany, France). Tectonophysics, 382: 117-128.
  • 15. Maxelon, M., Mancktelow, N.S., 2005. Three-dimensional geometry and tectonostratigraphy of the Pennine zone, Central Alps, Switzerland and Northern Italy. Earth-Science Reviews, 71: 171-227.
  • 16. Parker, R.L., 1974. Best bounds on density and depth from gravity data. Geophysics, 39: 644-649.
  • 17. Parker, R.L., 1975. The theory of ideal bodies for gravity interpretation. Geophysical Journal of the Royal Astronomical Society, 42: 315-334.
  • 18. Petecki, Z., 2019. Ideal body analysis of the Pomerania Gravity Low (northern Poland). Geological Quarterly, 63 (3): 558-567.
  • 19. Petecki, Z., Rosowiecka, O., 2017. A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. Geological Quarterly, 61 (4): 934-945.
  • 20. Putz, M., Stuwe, K., Jessell, M., Calcagno, P., 2006. Three-dimensional model and late stage warping of the Plattengneis Shear Zone in the Eastern Alps. Tectonophysics, 21: 87-103.
  • 21. Ryka, W., 1992. Geology of the Tajno massif carbonatites. Prace Państwowego Instytutu Geologicznego, 139: 43-77.
  • 22. Ryka, W., Armbrustmacher, T.J., Modreski, P.J., 1992. Geochemistry and petrology of the alkaline rocks of the Tajno complex (Preliminary report). Prace Państwowego Instytutu Geologicznego, 139: 37-41.
  • 23. Schreiber, D., Jean-Marc Lardeaux, J.-M., Martelet,G., Courrioux, G., Guillen A., 2010. 3-D modelling of Alpine Mohos in Southwestern Alps. Geophys. J. Int., 180: 961-975.
  • 24. Wiszniewska, J., Petecki, Z., Krzemińska, E., Grabarczyk, A., Demaiffe, D., 2020. The Tajno ultramafic-alkaline-carbonatite massif, NE Poland: a review. Geophysics, petrology, geochronology and isotopic signature. Geological Quarterly, 64 (2): 402-421.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72ae7f35-acfa-42b6-af45-7f2052674a4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.