PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examination of steam gasification of coal with physically mixed catalysts

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to analyse the steam gasification process of ‘Janina’ coal with and without Na-, K- and Ca-catalysts. The catalysts were physically mixed with the coal due to the simplicity of this method, short time of execution and certainty that the amount of catalyst is exactly as the adopted one. The isothermal measurements were performed at 800, 900 and 950°C and a pressure of 1 MPa using thermovolumetric method. The obtained results enabled assessment of the effect of analysed catalysts on the process at various temperatures by determination of: i) carbon conversion degree; ii) yield and composition of the resulting gas; and iii) kinetics of formation reactions of main gas components – CO and H2. The addition of catalysts, as well as an increase in operating temperature, had a positive effect on the coal gasification process – reactions rates increased, and the process time was reduced.
Słowa kluczowe
Rocznik
Strony
51--57
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059, Krakow, Poland
Bibliografia
  • 1. Monterroso R. Fan M. Argyle M.D. Varga K. Dyar D. Tang J. Sun Q. Towler B. Elliot K.W. & Kammen D. (2014). Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids. Appl. Catal. A Gen. 475 116–126. DOI: 10.1016/j.apcata.2014.01.007.
  • 2. International Energy Agency http://www.iea.org
  • 3. Ding L. Dai Z. Wei J. Zhou Z. & Yu G. (2017). Catalytic effects of alkali carbonates on coal char gasification. J. Energy Inst. 90(4) 588-601. DOI: 10.1016/j.joei.2016.05.003.
  • 4. Wang J. Jiang M. Yao Y. Zhang Y. & Cao J. (2009). Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel 88(9) 1572–1579. DOI: 10.1016/j.fuel.2008.12.017.
  • 5. Chen S.G. & Yang R.T. (1997). Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O. Energy Fuels 11(2) 421–427. DOI: 10.1021/ef960099o.
  • 6. Ohtsuka Y. & Asami K. (1997). Highly active catalysts from inexpensive raw materials for coal gasification. Catal. Today 39(1–2) 111–125. DOI: 10.1016/S0920-5861(97)00093-X.
  • 7. Karimi A. & Gray M.R. (2011). Effectiveness and mobility of catalysts for gasification of bitumen coke. Fuel 90(1) 120–125. DOI: 10.1016/j.fuel.2010.07.032.
  • 8. Kopyscinski J. Rahman R. Gupta R. Mims C. & Hill J. (2014). K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere. Fuel 117(Part B) 1181–1189. DOI: 10.1016/j.fuel.2013.07.030.
  • 9. Czerski G. Zubek K. Grzywacz P. & Porada S. (2017). Effect of char preparation conditions on gasification in a carbon dioxide atmosphere. Energy Fuels 31(1) 815–823. DOI: 10.1021/acs.energyfuels.6b02139.
  • 10. Porada S. Czerski G. Grzywacz P. Makowska D. & Dziok T. (2017). Comparison of the gasification of coals and their chars with CO2 based on the formation kinetics of gaseous products. Thermochim. Acta 653 97–105. DOI: 10.1016/j.tca.2017.04.007.
  • 11. Zubek K. Czerski G. & Porada S. (2018). Determination of optimal temperature and amount of catalysts based on alkali and alkaline earth metals for steam gasification process of bituminous coal. Thermochim. Acta 665 60–69. DOI: 10.1016/j.tca.2018.05.006.
  • 12. Zubek K. Czerski G. & Porada S. (2017). Comparison of catalysts based on individual alkali and alkaline earth metals with their composites used for steam gasification of coal. Energy Fuels 32(5) 5684–5692. DOI: 10.1021/acs.energyfuels.7b03562.
  • 13. Czerski G. (2018). Study on gasification kinetics by thermovolumetric and thermogravimetric methods. Przem. Chem. 97 214–223. DOI: 10.15199/62.2018.2.6.
  • 14. Porada S. Dziok T. Czerski G. Grzywacz P. & Strugała A. (2017). Examinations of Polish brown and hard coals in terms of their use in the steam gasification process. Mineral Resources Management 33(1) 15–34. DOI: 10.1515/gospo-2017-0007.
  • 15. De Micco G. Nasjleti A. & Bohe A. E. (2012). Kinetics of the gasification of a Rio Turbio coal under different pyrolysis temperatures. Fuel 95 537–543. DOI: 10.1016/j.fuel.2011.12.057.
  • 16. Szekely J. Evans J.W. & Sohn H.Y. (1976). Gas-solid Reactions. New York USA: Academic Press.
  • 17. Bhatia S.K. & Perlmutter D.D. (1980). A random pore model for fluid-solid reactions: I. Isothermal kinetic control. AIChE J. 26(3) 379–386. DOI: 10.1002/aic.690260308.
  • 18. Zubek K. Czerski G. & Porada S. (2017). The influence of catalytic additives on kinetics of coal gasification process. In E3S Web of Conferences 14 (02012) 1–10. EDP Sciences. Retrieved March 15 2017 from http://www.e3s-conferences.org. DOI: doi.org/10.1051/e3sconf/20171402012.
  • 19. Ding L. Zhang Y. Wang Z. Huang J. & Fang Y. (2014). Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char. Bioresour. Technol. 173 11–20. DOI: 10.1016/j.biortech.2014.09.007.
  • 20. Yamashita H. Nomura M. & Tomita A. (1992). Local structures of metals dispersed on coal. 4. Local structure of calcium species on coal after heat treatment and carbon dioxide gasification. Energy Fuels 6(5) 656–661. DOI: 10.1021/ef00035a018.
  • 21. Huang X. Zhang F. Fan M. & Wang Y. (2015). Catalytic Coal Gasification. Sustainable Catalytic Processes 179–199. DOI: 10.1016/B978-0-444-59567-6.00007-8.
  • 22. Li B. Wei L. Yang H. Wang X. & Chen H. (2014). The enhancing mechanism of calcium oxide on water gas shift reaction for hydrogen production. Energy 68 248–254. DOI: 10.1016/j.energy.2014.02.088.
  • 23. Sassmanova V. Janouchova R. Frantik J. Machackova I. & Juchelkova D. (2014). Influence of catalysts on water-gas shift reaction and hydrogen recovery. IERI Procedia 8 164–169. DOI: 10.1016/j.ieri.2014.09.027.
  • 24. Gnanamani M.K. Jacobs G. Shafer W.D. Sparks D.E. Hopps S. Thomas G.A. & Davis B.H. (2014). Low temperature water–gas shift reaction over alkali metal promoted cobalt carbide catalysts. Topics in Catalysis 57(6–9) 612–618. DOI: 10.1007/s11244-013-0219-7.
  • 25. Watanabe R. Sakamoto Y. Yamamuro K. Tamura S. Kikuchi E. & Sekine Y. (2013). Role of alkali metal in a highly active Pd/alkali/Fe2O3 catalyst for water gas shift reaction. Appl. Catalysis A: General 457 1–11. DOI: 10.1016/j.apcata.2013.03.010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72ade6fb-0e50-44fc-90a7-449e307e905f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.