Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Uncertainty in groundwater modeling presents a significant challenge, originating from various sources. This groundbreaking study aims to quantitatively assess uncertainties arising from spatial discretization and complexity dynamics. The research focuses on the Najafabad Aquifer in Esfahan, Iran, as a compelling case study. Five distinct conceptual models were developed, with parameter counts of 16 (model 1), 20 (model 2), 22 (model 3), and 26 (model 4 and 5), and subjected to a consistent spatial discretization of 500 m. Additionally, two alternative models with spatial discretizations of 250 m (model 1a) and 1000 m (model 1 b) were introduced based on the least complex model with 16 parameters. The study comprehensively examines groundwater uncertainty by manipulating spatial discretization while considering complexity dynamics. Model Muse facilitates simulation, and UCODE is utilized for calibration using observed hydraulic head data. Uncertainties are explored using Bayesian model-averaging (BMA) and model selection criteria. Comparing probabilities of the initial five models reveals increasing uncertainty with a greater number of parameters (KIC in model 1: 99.25%, model 2: 0.41%, model 3: 0.34%, model 4 and 5: 0%). Investigation of seven alternative models highlights the dominant influence of coarser spatial discretization on groundwater modeling uncertainty. Remarkably, despite the lowest complexity in model 1 with probability of 99.25%, the model with coarse spatial discretization (model 1b) exhibits the zero probability (KIC in model 1a: 93.42%, model 1: 6.53%, model 1b: 0%, model 2: 0.03%, model 3: 0.02%, model 4 and 5: 0%.). Thus, considering optimal parameter count and spatial discretization size is crucial in conceptual model development. This study pushes the boundaries of understanding the intricate relationship between spatial discretization, complexity, and groundwater modeling uncertainty. Findings hold significant implications for improving model accuracy and decision-making in hydrogeological studies.
Wydawca
Czasopismo
Rocznik
Tom
Strony
603--617
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
- Water Research Institute (WRI), Tehran, Tehran Province, Iran
- Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS, Canada
Bibliografia
- 1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716-723
- 2. Bomers A, Schielen RMJ, Hulscher SJ (2019) The influence of grid shape and grid size on hydraulic river modelling performance. Environ Fluid Mech 19(5):1273-1294
- 3. Chen B, Harp DR, Lu Z, Pawar RJ (2020) Reducing uncertainty in geologic CO2 sequestration risk assessment by assimilating moni¬toring data. Int J Greenhouse Gas Control 94:102926
- 4. Choubin B, Hosseini FS, Rahmati O, Youshanloei MM (2023) A step toward considering the return period in flood spatial modeling. Nat Hazards 115(1):431-460
- 5. Diks CG, Vrugt JA (2010) Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stoch Env Res Risk Assess 24(6):809-820
- 6. Downer CW, Ogden FL (2004) Appropriate vertical discretization of Richards’ equation for two-dimensional watershed-scale modelling. Hydrol Process 18(1):1-22
- 7. Duan Q, Ajami NK, Gao X, Sorooshian S (2007) Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv Water Resour 30(5):1371-1386
- 8. Emberger F (1969) Climatique la Tunisia. Instituto Agronomico perl’Oltremare, Florence, pp 31-52
- 9. Enemark T, Madsen RB, Sonnenborg TO, Andersen LT, Sandersen PB, Kidmose J, H0yer AS (2024) Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models. Hydrol Earth Syst Sci 28(3):505-523
- 10. Engelhardt I, De Aguinaga JG, Mikat H, Schuth C, Liedl R (2014) Complexity vs. simplicity: groundwater model ranking using information criteria. Groundwater 52(4):573-583
- 11. Environmental simulations Inc (ESI), (2007) Guides to using ground water vista. Version 5, pp 372
- 12. Gogineni A, Chintalacheruvu MR (2023). Streamflow assessment of mountainous river basin using SWAT model. In: International conference on science, technology and engineering. Singapore: Springer Nature Singapore, pp 1-10
- 13. Gogineni A, Chintalacheruvu MR (2024) Hydrological modeling and uncertainty analysis for a snow-covered mountainous river basin. Acta Geophys. https://doi.org/10.1007/s11600-023-01270-
- 14. Haitjema H (2011). Model complexity: a cost-benefit issue. In: Geological Society of America Abstracts with Programs, 43 (5), 354
- 15. Harbaugh AW (2005) Modflow-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Department of the Interior US Geological Survey, Reston VA, pp 6-A16
- 16. Higdon D, Swall J and Kern J (2022). Non-stationary spatial modeling
- 17. Hill MC, Tiedeman CR (2006) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. John Wiley & Sons, Hoboken
- 18. Holder J, Olson JE, Philip Z (2001) Experimental determination of subcritical crack growth parameters in sedimentary rock. Geophys Res Lett 28(4):599-602
- 19. Hurvich CM, Tsai CL (1989) Regression and time series model selection in small samples. Biometrika 76(2):297-307
- 20. Khan S, Vandermorris A, Shepherd J, Begun JW, Lanham HJ, Uhl-Bien M, Berta W (2018) Embracing uncertainty, managing complexity: applying complexity thinking principles to transformation efforts in healthcare systems. BMC health services research 18:1-8
- 21. Kashyap RL (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intell 2:99-104
- 22. Mahzabin A, Hossain MJ, Alam S, Shifat SE, Yunus A (2023) Groundwater level depletion assessment of Dhaka city using modflOW. Am J Water Res 11(1):28-40
- 23. Meyer PD, Ye M, Rockhold ML, Neuman SP, and Cantrell KJ (2007). Combined estimation of hydrogeologic conceptual model, parameter, and scenario uncertainty with application to uranium trans¬port at the Hanford Site 300 Area).
- 24. Miro ME, Groves D, Tincher B, Syme J, Tanverakul S, Catt D (2021) Adaptive water management in the face of uncertainty: integrating machine learning, groundwater modeling and robust decision making. Clim Risk Manag 34:100383
- 25. Navarro-F arfán MDM, García-Romero L, Martmez-Cinco MA, Hernandez-Hernandez MA, Sanchez-Quispe ST (2024) Comparison between modflow groundwater modeling with traditional and distributed recharge. Hydrology 11(1):9
- 26. Neumann SP (2003) Maximum likelihood Bayesian averaging of uncertain model predictions. Stoch Env Res Risk A 17:291-305
- 27. Poeter EE, Hill MC, Banta ER, Mehl S and Christensen S (2006) UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation constructed using the Jupiter API (No. 6-A11).
- 28. Pogson M, Smith P (2015) Effect of spatial data resolution on uncertainty. Environ Model Softw 63:87-96
- 29. Pogson M, Hastings A, Smith P (2012) Sensitivity of crop model predictions to entire meteorological and soil input datasets highlights vulnerability to drought. Environ Model Softw 29(1):37-43
- 30. Pohlmann K, Ye M, Reeves D, Zavarin M, Decker D, Chapman J (2007) Modeling of groundwater flow and radionuclide transport at the Climax mine sub-CAU, Nevada test site (No DOE/ NV/26383-06; 45226). Desert Research Institute, Nevada System of Higher Education, Reno and Las Vegas, NV
- 31. Raazia S, Dar AQ (2021) A numerical model of groundwater flow in Karewa-Alluvium aquifers of NW Indian Himalayan Region. Model Earth Syst Environ 81:1-12
- 32. Refsgaard JC (1997) Parameterisation, calibration and validation of distributed hydrological models. J Hydrol 198(1-4):69-97
- 33. Rissanen J (1978) Modeling by shortest data description. Automatica 14(5):465-471
- 34. Roy S, Chintalacheruvu MR (2024) Delineating hydro-geologically constrained groundwater zones in the Himalayan River basins of India through an innovative ensemble of hypsometric analysis and machine learning algorithms. Earth Sci Inf 17(1):501-526
- 35. Samani S, Kardan Moghaddam H (2022) Optimizing groundwater level monitoring networks with hydrogeological complexity and gridbased mapping methods. Environ Earth Sci 81(18):453
- 36. Samani S, Moghaddam AA, Ye M (2018a) Investigating the effect of complexity on groundwater flow modeling uncertainty. Stoch Env Res Risk Assess 32(3):643-659
- 37. Samani S, Ye M, Zhang F, Pei YZ, Tang GP, Elshall A, Moghaddam AA (2018b) Impacts of prior parameter distributions on Bayesian evaluation of groundwater model complexity. Water Science and Engineering 11(2):89-100
- 38. Sciuto G, Diekkruger B (2010) Influence of soil heterogeneity and spatial discretization on catchment water balance modeling. Vadose Zone J 9(4):955-969
- 39. Simmons CT, Hunt RJ (2012) Updating the debate on model complexity. GSA Today 22(8):28-29
- 40. Singh A, Mishra S, Ruskauff G (2010) Model averaging techniques for quantifying conceptual model uncertainty. Groundwater 48(5):701-715
- 41. Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks. Springer Science & Business Media, New York
- 42. Stampfl PF, Clifton-Brown JC, Jones MB (2007) European-wide GIS- based modelling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Glob Change Biol 13(11):2283-2295
- 43. Sun W, Ma H, Qu W (2024) A hybrid numerical method for non-linear transient heat conduction problems with temperature-dependent thermal conductivity. Appl Math Lett 148:108868
- 44. Taşan M, Taşan S, Demir Y (2023) Estimation and uncertainty analysis of groundwater quality parameters in a coastal aquifer under seawater intrusion: a comparative study of deep learning and classic machine learning methods. Environ Sci Pollut Res 30(2):2866-2890
- 45. Taylor A, Peach D (2023) Groundwater modeling of the Silala basin and impacts of channelization. Wiley Interdiscip Rev Water 11:e1662
- 46. Thornton JM, Therrien R, Mariethoz G, Linde N, Brunner P (2022) Simulating fully-integrated hydrological dynamics in complex Alpine headwaters: potential and challenges. Water Resour Res 58(4):e2020WR029390
- 47. Vazquez RF, Feyen L, Feyen J, Refsgaard JC (2002) Effect of grid size on effective parameters and model performance of the MIKE-SHE code. Hydrol Process 16(2):355-372
- 48. Wang S, Hastings A, Smith P (2012) An optimization model for energy crop supply. Gcb Bioenergy 4(1):88-95
- 49. Wildemeersch S, Goderniaux P, Orban P, Brouyere S, Dassargues A (2014) Assessing the effects of spatial discretization on large-scale flow model performance and prediction uncertainty. J Hydrol 510:10-25
- 50. Ye M, Neuman SP, Meyer PD (2004) Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resour Res. https://doi.org/10.1029/2003WR002557
- 51. Ye M, Meyer PD, Neuman SP (2008a) On model selection criteria in multimodel analysis. Water Resour Res. https://doi.org/10.1029/2008WR006803
- 52. Ye M, Pohlmann KF, Chapman JB (2008b) Expert elicitation of recharge model probabilities for the death valley regional flow system. J Hydrol 354(1-4):102-115
- 53. Ye M, Pohlmann KF, Chapman JB, Pohll GM, Reeves DM (2010) A model-averaging method for assessing groundwater conceptual model uncertainty. Groundwater 48(5):716-728
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72ab6565-fb67-4f57-80f5-e1af276bdfd2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.