PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bearing Capacity Evaluation of Shallow Foundations on Stabilized Layered Soil using ABAQUS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the finite element method (FEM) is applied to calculate the bearing capacity of two footings having the aspect ratio L/B (where L and B are the length and width of the footing, respectively) equal to 1, 2 resting on one-layer and two-layer soil. Soil profile contains two soil types including sand and clay. The soil strip is 500mm × 500mm × 350mm; however, only a quarter of the model (250mm × 250mm × 350mm) is examined in the study. Two primary situations are investigated in this study. In the first situation, the one-layer system is supposed to be sandy soil with footing overlays on medium-dense sand. The soft clay/stabilized clayey layer is supposed to be on top of the sandy soil in the second condition, with the footing resting on top of the soft clay/stabilized clay. The influence of layer thickness, aspect ratio, and material property on the bearing capacity value and footing failure mechanism is studied for eight different combinations of layered soil. The bearing capacity for a one-layer case is also estimated, and it agrees well with Vesic (1973), Hansen (1970), and Terzaghi's (1943) equations. The bearing capacity of footings is observed to decline when the height of unstabilized clayey soil increases, and it increases when clayey soil is stabilized with molasses, waste foundry sand, and lime alone and in combination with each other.
Słowa kluczowe
Wydawca
Rocznik
Strony
55--71
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Civil Engineering Department, NIT Hamirpur (HP), India
  • Civil Engineering Department, NIT Hamirpur (HP), India
Bibliografia
  • [1] Button, S.J. (1953). The bearing capacity of footing on a two-layer cohesive subsoil. Proc. 3 rd International Conference on Soil Mechanics and Foundation Engineering 1953, 1, 332–335.
  • [2] Ismail, I., Raymond, G.P. (1995). Geosynthetic reinforcement of granular layered soils. In: Proceedings of geosynthetics, 317–330.
  • [3] Szypcio, Z., Dołżyk, K. (2006). The bearing capacity of layered subsoil. Studia Geotechnica et Mechanica, 28(1), 45–60.
  • [4] Dobrzański, J., Kawa, M. (2021). Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil. Studia Geotechnica et Mechanica.
  • [5] Debnath, L. (2021). Seismic bearing capacity of shallow strip footing embedded in slope resting on two-layered soil. Studia Geotechnica et Mechanica, 43(3), 285–306.
  • [6] Reddy, A.S., Srinivasan, R.J. (1967). Bearing capacity of footings on layered clays. Journal of the Soil Mechanics and Foundations Division, 93(2), 83–99.
  • [7] Lee, K.M., Manjunath, V.R., Dewaikar, D.M. (1999). Numerical and model studies of strip footing supported by a reinforced granular fill—soft soil system. Canadian Geotechnical Journal, 36, 793–806
  • [8] Boushehrian, J.H., Hataf, N. (2003). Experimental and numerical investigation of the bearing capacity of model circular and ring footings on reinforced sand. Geotextiles and Geomembranes, 21(4), 241–256.
  • [9] Chung, W., Cascante, G. (2007). Experimental and numerical study of soil-reinforcement effects on the low-strain stiffness and bearing capacity of shallow foundations. Geotechnical and Geological Engineering, 25(3), 265–281.
  • [10] Benmebarek, S., Benmoussa, S., Belounar, L., Benmebarek, N. (2012). Bearing capacity of shallow foundation on two clay layers by numerical approach. Geotechnical and Geological Engineering, 30(4), 907–923.
  • [11] Raman, K.V., Dayakar, P., Raju, K.V.B. (2012). Study on settlement behaviour of layered soils. International Journal of Biotech Trends and Technology (IJBTT), 2(4), 40–45.
  • [12] Mosadegh A., Nikraz H. (2015). Bearing capacity evaluation of footing on a layered-soil using ABAQUS. Journal of Earth Science and Climatic Change, 6(3), 264. DOI: https://doi.org/10.4172/2157-7617.1000264
  • [13] Roy, S.S., Deb, K. (2019). Influence of footing interference on bearing capacity improvement for geogrid-reinforced sand bed underlain by soft clay. In: Geo-Congress 2019: Earth Retaining Structures and Geosynthetics, Reston, VA: American Society of Civil Engineers, 322–330.
  • [14] Mandeel, S.A.H., Mekkiyah, H.M., Al-Ameri, A.F.I. (2020). Estimate the bearing capacity of full-scale model shallow foundations on layered-soil using PLAXIS. Solid State Technology, 63(1), 1775–1787.
  • [15] Bhardwaj, A., Walia, B.S. (2017). Influence of cement and polyester fibers on compaction and CBR value of clayey soil. In: Indian Geotechnical Conference.
  • [16] Sharma, A., Sharma, R.K., Bhardwaj, A. (2018). Effect of construction demolition and glass waste on stabilization of clayey soil. In: International Conference on Sustainable Waste Management through Design, Springer, Cham, 87–94. https://doi.org/10.1007/978-3-030-02707-0_12
  • [17] Sharma, A., Sharma, R.K. (2019). An experimental study on uplift behaviour of granular anchor pile in stabilized expansive soil. International Journal of Geotechnical Engineering, 1–14. https://doi.org/10.1080/1938636.2.2019.1597481
  • [18] Bhardwaj, A., Sharma, R.K., Sharma, A. (2021). Stabilization of clayey soil using waste foundry sand and molasses. In: Sustainable Development through Engineering Innovations, Springer, Singapore. 641–649.
  • [19] Fattah, M.Y., Al-Saidi, A., Jaber, M.M. (2015). Improvement of bearing capacity of footing on soft clay grouted with lime-silica fume mix. Geomechanics Engineering, 8(1), 113–132.
  • [20] Pancar, E.B., Akpınar, M.V. (2016). Comparison of effects of using geosynthetics and lime stabilization to increase bearing capacity of unpaved road subgrade. Advances in Materials Science and Engineering.
  • [21] Rasouli, H., Takhtfirouzeh, H., Taghavi Ghalesari, A., Hemati, R. (2017). Bearing capacity improvement of shallow foundations using cement-stabilized sand. In: Key engineering materials Trans Tech Publications Ltd, 723, 795–800.
  • [22] Arora, S., Kumar, A. (2019). Bearing capacity of strip footing resting on fibre-reinforced pond ash overlying soft clay. Innovative Infrastructure Solutions, 4 (34). https://doi.org/10.1007/s41062-019-0221-4
  • [23] Bhardwaj, A., Sharma, R.K. (2022). Designing thickness of subgrade for flexible pavements incorporating waste foundry sand, molasses, and lime. Innovative Infrastructure Solutions, 7, 132. https://doi.org/10.1007/s41062-021-00723-6.
  • [24] ASTM D2487–11 (2011). Standard practice for classification of soils for engineering purposes (unified soil classification system), ASTM International, West Conshohocken.
  • [25] Johnson, K., Christensen, M., Sivakugan, N., Karunasena, W. (2003). Simulating the response of shallow foundations using finite element modeling. Proceedings of the MODSIM 2003 International Congress on Modelling and Simulation, Townsville, QLD, Australia, 2060–2065.
  • [26] Thakur, A., Dutta, R.K. (2020). Experimental and numerical studies of skirted hexagonal footings on three sands. SN Applied Sciences, 2(3), 487. DOI: https://doi.org/10.1007/s42452-020-2239-9
  • [27] Jeya Rami Reddy, P. (2013). Stochastic Hydrology. Laxmi Publications Private Limited, Ajit Printing Press, New Delhi, 122–130.
  • [28] Bilgili, M. (2010). Prediction of soil temperature using regression and artificial neural network models. Meteorological Atmospheric Physics, 110, 59–70.
  • [29] Rezaeianzadeh, M., Tabari, H., ArabiYazdi, A., Isik, A., Kalin, L. (2013). Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput&Applic. springer-verlag London, DOI 10.1007/s00521-013-1443-6.
  • [30] Michalowski, R.L. (2002). Collapse Loads over Two-layer Clay Foundation Soils. Soils and Foundations, 42, 1–7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72a8a15d-7576-4523-9e3f-1daa79d9abb9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.