Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The urban Oringa River basin is facing rapid degradation due to population growth and land use changes. The integration of remote sensing, GIS, and the revised universal soil loss equation provides an effective approach to monitor and to evaluate soil erosion in this region. The study aims to assess soil loss in the Ouringa River basin in Morocco using the RUSLE model, integrated with remote sensing and GIS. The RUSLE model includes several key factors that contribute to erosion, including rainfall erodibility (R), soil erodibility (K), slope length and steepness (LS), conservation practices (P), and vegetation cover (C). The results indicate that the Oringa River basin has been facing continuous soil erosion for four decades, with annual losses exceeding 200 tons per hectare initially and continuing through 1981–2022. The analysis reveals that 60–66% of the area experienced minor soil erosion, remaining below 100 tonnes per hectare. However, 20–23% of the land showed low erosion (100–200 tonnes per hectare), while 8–10% experienced moderate erosion (200–400 tonnes per hectare). A smaller proportion, 4–5%, experienced moderate erosion (400–1000 tonnes per hectare), and 2% experienced severe erosion exceeding 1000 tonnes per hectare. Effective soil management is critical to mitigate these losses and protect watersheds. Analysis of land use types revealed by NDVI-based that bare land, covering 67% of the watershed, significantly contributes to erosion despite its lower C factor. Conversely, tree-covered areas, accounting for 12%, have minimal erosion impact due to their dense vegetation. Built-up areas, covering 8%, have the highest C factor, indicating a high erosion potential. This thorough assessment aids in identifying priority areas for targeted erosion control efforts.
Wydawca
Rocznik
Tom
Strony
29--40
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Laboratory of Geosciences, Department of Geology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
autor
- Laboratory of Geosciences, Department of Geology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
autor
- Laboratory of Organic Chemistry, Catalysis and Environmental Unit, Department of Chemistry, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
autor
- Laboratory of Geosciences, Department of Geology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
autor
- Laboratory of Geosciences, Department of Geology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
autor
- Laboratory of Geosciences, Department of Geology, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Bibliografia
- 1. Abdo H., & Salloum J. (2017). Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environmental Earth Sciences, 76(1), 1–10.
- 2. Al-Aizari H.S., Ghfar A.A., Al-Aizari A.R., Al- Aizari A.-J.M., Moshab M.S., Sillanpää M. (2023). Assessing groundwater quality and diagnosing nitrate pollution in the Sidi Allal Region: A GIS-based approach utilizing the groundwater pollution index. Hydrology, 10(227).
- 3. Amellah O., & el Morabiti K. (2021). Assessment of soil erosion risk severity using GIS, remote sensing, and RUSLE model in Oued Laou Basin (north Morocco). Soil Science Annual, 72(142530).
- 4. Benzougagh B., Meshram S.G., Dridri A., Boudad L., Baamar B., Sadkaoui D., Khedher K.M. (2022). Identification of critical watershed at risk of soil erosion using morphometric and geographic information system analysis. Applied Water Science, 12(1–20).
- 5. Brahim B., Meshram S.G., Abdallah D., Larbi B., Drisss S., Khalid M., & Khedher K.M. (2020). Mapping of soil sensitivity to water erosion by RUSLE model: Case of the Inaouene watershed (Northeast Morocco). Arabian Journal of Geosciences, 13(1–15).
- 6. Cheng Z., Lu D., Li G., Huang J., Sinha N., Zhi J., & Li S. (2018). A random forest-based approach to map soil erosion risk distribution in Hickory Plantations in western Zhejiang Province, China. Remote Sensing, 10(1899).
- 7. Dutta D., Das S., Kundu A., & Taj A. (2015). Soil erosion risk assessment in Sanjal watershed, Jharkhand (India) using geo-informatics, RUSLE model and TRMM data. Modeling Earth Systems and Environment, 1(1–9).
- 8. Fijałkowska A. (2021). Analysis of the influence of DTM source data on the LS factors of the soil water erosion model values with the use of GIS technology. Remote Sensing, 13(678).
- 9. Ganasri B.P., & Ramesh H. (2016). Assessment of soil erosion by RUSLE model using remote sensing and GIS-A case study of Nethravathi Basin. Geoscience Frontiers, 7(953–961).
- 10. Gayen A., Saha S., & Pourghasemi H.R. (2020). Soil erosion assessment using RUSLE model and its validation by FR probability model. Geocarto International, 35(1750–1768).
- 11. Issa L.K., Raissouni A., Moussadek R., El Arrim A., & Khali L. (2014). Mapping and assessment of water erosion in the Khmiss Watershed (North Western Rif, Morocco). Current Advances in Environmental Science, 2(119–130).
- 12. Jarasiunas G., Switoniak M., & Kinderiene I. (2020). Dynamics of slope processes under changing land use conditions in young morainic landscapes, Western Lithuania. International Agrophysics, 34.
- 13. Kalambukattu J., & Kumar S. (2017). Modelling soil erosion risk in a mountainous watershed of Mid- Himalaya by integrating RUSLE model with GIS. Eurasian Journal of Soil Science, 6(92–105).
- 14. Melo J.A. (2017). Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Regional.
- 15. Michalopoulou M., Depountis N., Nikolakopoulos K., & Boumpoulis V. (2022). The significance of digital elevation models in the calculation of LS factor and soil erosion. Land, 11(1592).
- 16. Millward A.A., & Mersey J.E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(109–129).
- 17. Ouallali A., Moukhchane M., Aassoumi H., Berrad F., Dakir I., & Ouadighi B. (2016). The mapping of the soils’ degradation state by adaptation the PAP/ RAC guidelines in the watershed of Wadi Arbaa Ayacha, Western Rif, Morocco. Journal of Geoscience and Environment Protection, 4(77–88).
- 18. Panagos P., Borrelli P., Meusburger K., Alewell C., Lugato E., & Montanarella L. (2015). Estimating the soil erosion cover-management factor at the European scale. Land Use Policy, 48(38–50).
- 19. Park S., Oh C., Jeon S., Jung H., & Choi C. (2011). Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss Eq. Journal of Hydrology, 399(263–273).
- 20. Poesen J., Nachtergaele J., Verstraeten G., & Valentin C. (2003). Gully erosion and environmental change: Importance and research needs. Catena, 50(91–133).
- 21. Pradeep G.S., Krishnan M.N., & Vijith H. (2015). Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques. Arabian Journal of Geosciences, 8(3697–3711).
- 22. Prasannakumar V., Vijith H., Abinod S., & Geetha N. (2012). Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Eq. (RUSLE) and geo-information technology. Geoscience Frontiers, 3(209–215).
- 23. Ran-ran Y., Han-qiu X.U., & Na L. (2013). RUSLE-based quantitative study on the soil erosion of the Hetian basin area in County Changting, Fujian Province, China. Journal of Soil and Water Conservation, 33(2974–2982).
- 24. Renard K.G., Foster G.R., Weesies G.A., & Porter J.P. (1991). RUSLE: Revised universal soil loss Eq. Journal of Soil and Water Conservation, 46(30–33).
- 25. Sundara Kumar P., Venkata Praveen T., Anjanaya Prasad M., & Santha Rao P. (2018). Identification of critical erosion prone areas and computation of sediment yield using remote sensing and GIS: A case study on Sarada river basin. Journal of The Institution of Engineers (India): Series A, 99(719–728).
- 26. Tesfaye G., & Ameyu T. (2021). Soil erodibility analysis and mapping in Gilgel Gibe-I Catchment, Omo-Gibe River Basin, Ethiopia. Applied and Environmental Soil Science, 2021(8985783).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72a69d15-57e8-482f-bb1d-2cdfe2f7a96f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.