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MATHEMATICAL MODEL OF TOOTH FLANK
OF WORM WHEEL WITH ARC PROFILE
IN GLOBOID WORM GEAR

Piotr Potowniak

Summary

This paper presents a mathematical description of tooth flank surface of the worm wheel generated by
the hourglass worm with convex or concave tooth axial profile. The kinematic system of globoid worm
gear and tooth formation of worm wheel was performed. The mathematical description of tooth flank of
globoid worm with arc profile was used. The presented mathematical model of tooth flank of worm
wheel with mathematical model of hourglass worm can be used to analyze e.g. the contact pattern of
the gear.
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Matematyczny model boku zeba slimacznicy o zarysie fukowym
przekladni slimakowej globoidalnej

Streszczenie

Przedstawiono w pracy matematyczny opis powierzchni boku zeba $limacznicy ksztattowanego
globoidalnym frezem §limakowym o zarysie wklestym lub wypuktym. Oméwiono uktad kinematyczny
przektadni $limakowej globoidalnej i ksztattowania boku zeba §limacznicy. Stosowano matematyczny
opis powierzchni bocznej $limaka globoidalnego o zarysie tukowym. Przyjety matematyczny model
boku zeba $limacznicy o zarysie tukowym wraz z modelem matematycznym §limaka globoidalnego
bedzie podstawa analizy m.in. $ladu styku przektadni.

Stowa kluczowe: przektadnia $limakowa globoidalna, slimacznica

1. Introduction

Globoid worm drive was initially invented approxitely in 1765 by
H. Hindley [1, 2]. In the beginning of XX centuramuel I. Cone patented the
applicable technology to manufacture this worm @rj8, 4]. In this case the
hourglass worm is lathed by a lathe tool with ginablade. The meshing worm
wheel is generated by an hourglass hob similan¢chburglass worm. Because
of advantages of this kind of drive, it achievedieviapplication rapidly. This
gear drive has the increased load capacity duédohigher contact ratio in
comparison with that of conventional worm gear esivhigher efficiency results
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from the existence of more favorable lubricatiomditions. The special shape
of the worm increases the number of teeth thasaneltaneously in mesh and
improves the conditions of force transmission. Taeditions of lubrication and
the efficiency of the invented drive (in compariseith a worm gear drive with
a cylindrical worm) are substantially better [1,52, The complex geometry of
the globoid worm gear drive and its advantagesiiedpmany researchers to
develop the analytical aspects of the meshing efvibrm and the worm gear
tooth surfaces. Researchers proposed novel wornegirike Wildhaber worm
drive [6], where the hourglass worm is generatedh®sy normal plane worm
gear. The other example is involute globoid wornvedrin this case the gear
consists with an involute gear and an hourglassnagenerated by the involute
gear. The novel type of this kind of involute gesathe involute beveloid gear
enveloping hourglass worm. This drive is consigtkdn involute beveloid gear
and an hourglass worm generated by the involutelbil gear surface. The
next type is non-backlash double-roller envelopgrglass worm drive and
the tori double-enveloping hourglass worm drive.n&ally globoid worm
drives are widely used in various industrial sewtioowadays [7].

The new type of globoid worm gear consists of hiasg worm with
convex or concave tooth axial profile and worm whee proposed. The
mathematical description of tooth flank of worm lwérc profile was presented
in [8]. The aim of this work is to describe the ttodlank of worm wheel, which
is generated by the hourglass worm with convexomcave tooth axial profile.
The mathematical model of worm and presented woitreelvcan be used to
analyze e.g. contact region of such kind of gear.

2. Kinematic coordinate system of globoid worm gear

The kinematic coordinate system of globoid wormrgeahown in Fig. 1.

The globoid worm gear is crossed gear with angle9@f. The two
stationary coordinate systesy (x;y;z;) andS, (x,y,z,) connected with worm
and worm wheel respectively were established. Thgsems can be handled as
systems associated with housing. The moveable r@tedsystens; (x;y;1z;)
of worm andS; (x;y;z;) of worm wheel was introduced. Centers of coorina
systems are described @s and0,. The distance between centerss also the
distance between the centers of coordinate systésm rotates clockwise
aboutz; axis by the angle;. Then worm wheel rotates clockwise abslitby
the angleg, (in case of lead left worm)p; and ¢, are also the geometric
surface parameters. Between and ¢, exists relationship resulting from gear
ratio. The gear ratid is defined as ratio of number of teeth on the waoom
number of teeth on worm wheel. This gives:

i=2t=%2 (1)

Z2 P1
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where:z; — number of teeth on worm; — number of teeth on worm wheel,
— worm rotation parameter and the main surfacenpeter,, — worm wheel
rotation parameter and the auxiliary surface patame

Fig. 1. Kinematic coordinate system of globoid wayear

The surface of wornk; in coordinate system;y;z; is represented by
a position vectoﬁ(l). Similarly, the surface of worm whegB} in the x;y;z

coordinate system is represented by position vet‘:ﬁ)'r). To describe the
geometrical model of the teeth and mesh of the wand worm gear, it is
necessary to show the transformations between tWserss using a
homogeneous matrix of 4 x 4, which contains a imtatatrix and an offset
vector.
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cos(pq) —sin(p;) 0 O
M sin(¢;) cos(p;) O O )
0 0 1 0
0 0 0 1
1 0 0 O
01 0 a
0 0 0 1
1 0 0 0
_o costp) —sin(py) 0
Moz = 0 sin(p,) cos(py) O (4)
0 0 0 1
1 0 0 O
01 0 —-a
0 0 0 1
[cos(—¢,) —sin(—¢;) 0 O
M. = sin(—¢p;) cos(—¢py) 0 O 6)
1 0 0 10
0 0 0 1
[1 0 0 0]
_ |0 cos(=¢;) —sin(—¢z) O
M22= 10 sin(—p,) cos(—py) O (7)
10 0 0 1.

where:M, ,/ — is the homogeneous matrix of transformation fadrto 1, M,, —

is the homogeneous matrix of transformation frdmto 2, M,, is the
homogeneous matrix of transformation fr@mto 2, M,, — is the homogeneous
matrix of transformation fron2 to 1, M,;; — is the homogeneous matrix of
transformation from1 to 1', M,, — is the homogeneous matrix of
transformation fron2 to 2’.

3. Mathematical model of hourglass worm with arc pofile

Mathematical model of hourglass single lead leftrwavith arc profile in
axis section was particularly described in [8].idt necessary to recall the
equation of the tooth flank of worm:
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[ X1(0) * cos(p1) —a-sin(pq) +a- cos(@y) - sin(@,) + ]
+y1(0) - cos(@,) - sin(gq) — z1(0) - sin(¢,) * sin(¢p;)

—x41(0) - sin(p,) —a- cos(¢y) +a- cos(¢,) - cos(z) +

(1) _ . 8
£t +y1(8) - cos(@) - cos(@q) — 21 () - sin(¢y) * cos(¢,) (8)

a-sin(@z) +y1(0) - sin(@z) + 2,(0) - cos(¢z)

1
where: @, — worm surface parameter, (8), y,(0), z,(0) are the parametric

equation of axial section profile of worm tooth.e€yhcan be expressed jnz,
plane as:

x1(0)=0
¥1(8) =R - cos() + yo 9)
2z, (0) =R -sin(0) + z,
where: 6 — parameter of profile (range of arc profig; < 6 < 6y), vo,2o —

coordinates of arc centd?,— radius of arc [8].

a) 50 b) sof

Fig. 2. Tooth sides of globoid worm with: a) coneaurofile, b) convex profile, based on [8]
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To obtain convex or concave worm surface is necgdsasubstitute in eq.
(9) the proper coordinates of arc center and rasfgarc profile, what was
described in [8]. Figure 2 shows the both tootHasm& of convex and concave
globoid worm created on the grounds of eq. (8).

4. Mathematical model of worm gear formed
by tool with arc profile

The kinematic cutting system of worm wheel is thme like system shown
in Fig. 1. The description of one side of the tosthface is presented. It is
enough to make afterwards for example the analykisontact pattern. The
worm wheel tooth surface is formed by a surfacevafm hob tooth. It is noted
that worm wheel surface is divided into three ragi¢Fig. 3) [5, 9]. Region Il is
the envelope of the family of contact lines of geetr Region | and Ill is formed
by a first cutting edge of worm hob cutter (Fig. @ne extreme cutting edge of
worm hob cutter forms one side of worm wheel toatld the second edge the
another flank.

Wiy
L
ll'llll!lllllm

iy
i

Fig. 3. Explanation view of tooth side of globoidnmn wheel

The condition of existence of an envelope is regrtedd by the equation
of meshing:

NyVx + 1y 0, + N0, =0 (10)

where:n,, n,,n, — components of the normal vector to the surfagey,, v, —
components of the tangent vector.

Relation between rotation of worm wheg} to rotation of worme, is
given as:

Myryr = Myry - Mpqy - Myy (11)
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Extreme cutting
edge ,1’

Extreme cutting
edge ,2’'

Fig. 4. lllustrative figure of worm hob model witharked
cutting edges generating a part of tooth side ofwaheel

Substituting eq. (2), (3), (7) to eq. (11) the exgzion (12) is obtained:

cos(¢1) —sin(¢g4) 0 0
Mors = | COS(@2)sIn(01)  cos(py) - cos(py) sin(py) a*cos(y)
#T | =sin(gy)sin(g,)  —cos(@y)sin(g,) cos(gp,) —a-sin(py)
0 0

0 1
(12)
The surface normal vectar‘ug2 ) is expressed as:
()
") [n;(c;,)] or™) ort)

T_ll = nyl = Lzlll . ( 3;1 X 61_9) (13)

")
nzl

where: L,/;» — is the matrix of transformation from' do 2'. L,y can be
obtained by crossing out the last row and the dakimn of the homogeneous
matrix of transformation:

cos(¢p1) —sin(¢,) 0
Lyryr = |cos(g2) - sin(p1) cos(gz) - cos(py)  sin(gz) (14)
—sin(pq)sin(@z)  —cos(@y)sin(p;)  cos(¢z)



34 P. Potowniak

,(1’)
Derlvatlve

is expressed as:

o)
¢,

[—x1(0) - sin(g;) — a- cos(@,) + a - cos(@,) - cos(@,) + y1(6) - cos(@y) - cos(gs) -]
—2,(6) - sin(@y) - cos(@,) —i-a-sin(@,) - sin(ey) —
—i-y1(6) - sin(@,) - sin(@,) —i-2,(6) - cos(g,) - sin(g;)

= | =x1(6) ~ cos(gy) +a-sin(p,) —a- cos(y) - sin(@,) — y1(6) - cos(ey) - sin(e,) +
+2,(8) - sin(@,) - sin(¢y) —i-a-sin(gy) - cos(e,) —
—i-y1(0) - sin(p,) - cos(@,) — i - 2,(8) - cos(ez) - cos(@1)

a-i-cos(@z) +1i-y1(8) - sin(@z) —i-2,(6) - sin(p,)

(15)
_(1’)
The expressmw is solved by substituting for; (6), y;(0) andz;(0)

the parametric equation (9) of axial section peobf worm tooth. Derivative
,(1’)
——is expressed as:

ey —R- cos(¢g,) - sin(¢p;) - sin(8) — R- cos(B) - sin(¢,) - sin(¢p,)
219 = |—R- cos(¢p;) - cos(¢,) - sin(f) — R- cos(¢;) - cos(B) - sin(¢p,)
R - cos(¢p,) - cos(8) — R-sin(¢,) - sin(0)

(16)

The surface normal vectﬁlgzl) is obtained, substituting eq. (14), (15), (16)

into expression (13). The explicit representatibrﬁgg ) is not presented due to
its complexity.

Tangent vector can be calculated based on kinesnatievorm gear. It is
obtained by applying the following equation:

(2
! [ piy ] —(2)
o) = o) = T = S ) @)
Lol
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... dMm . o
The derlvatlveﬁ'l' is calculated substituting in (12) fap; = £=. It
2
yields:
ai1 Q12 Q13 QAq4
dm a a a a
AMpryr _ [921 22 23 a24 (18)
de; az; a3z 04z3 34
Qg1 QAgp Q43 QAyy
where:
__ sin(gq)
a1 = — i y
_ cos(gy)
A = ———

i

1 . .
a1 = 1+ cos(gy) os(pz) — sin(gy) sin(gy),

} 1,
Az, = —cos(@,) - sin(g,) — i sin(¢1) cos(¢2),
az3 = cos(py),
. Qpgq = —a- Sin((p2)7
ag1 = — 1+ cos(py) sin(pz) — sin(gy) cos(py),

1. .
a3z = —cos(;) - cos(@2) + 1 sin(gy) sin(py),
asz = —sin(@,),
azq = —a- cos(@y),
Q13 = G4 = Qg1 = Qg4 = Qu3 = 0,
a44 = 1

Eq. (8) and (18) are substituted into (17). Thelieitprepresentation of
_(2"

v;” 7 is not presented due to its complexity. In theegahequation of gear

meshing the eq. of surface normal vecﬁé?‘) and tangent vectoﬁl(z) are
introduced:

[n(zl’)‘ [v(ﬂ
oo = a2 o) =0 &

y1
&) 1)

After solving the eq. (19), for given parametérthe solutions set ap; is
obtained. These parameters define contact linedstworm and worm wheel.
Substituting the solutions to eq. (8) contact limess; coordinate system are
received:
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7 = 7 (g, 0) (20)

Where:fc(l1 ) _ vector of contact linep,, & — parameters satisfying the eq. (19).

Contact lines on the tooth side of worm with corcélvig. 5) and convex
(Fig. 6) tooth profile are plotted.

Fig. 5. Contact lines shown §f coordinate system
(tool with concave profile)

Surface; is in tangent witlk, at every instant of two lines. One line lies
in the middle plane of worm gear. While the wornmisnesh with worm wheel,
the character of these generated lines, lying énplaney; z;, is constant. The
profile of these lines is concave or convex depeidsorm tooth profile. The
other contact lines between worm surface and woimeel surface are the
envelope to the family oE;. These lines generate that part of worm wheel,

which is described as region Il. Region @(_]ﬁlgion_”) can be obtained by

rotating the worm with specified value in rotatioange from 0 to 2 and
determining the contact lines. Those lines arecsade which are not lying in the
axial section of worm (or in middle plane of worreag). Then the selected
contact lines should be brought to the one toath ef worm wheel, as shown as
example in Fig. 7.
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Fig. 6. Contact lines shown §j coordinate system
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(tool with convex profile)

1

X

Fig. 7. Region Il of that part worm wheel which is
envelope to the family of worm presented 3h

coordinate system (here region Il generated by the

tool with concave profile)
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Region | and 1l is formed by a first cutting edgkeworm hob cutter. It is
equivalent with the extreme contact line, lyinghe y;z; plane. The alternative
is a transformation of axial profile of worm(l,)_

1(‘/’1“/’11))
assumed that the extreme cutting edge of the ie®lih the plang;z;, like in
Fig. 5 or 6. Otherwise it is necessary to rotagettiol by an angle to ensure, that
this condition is met.

The surface generated by the extreme cutting edg®esented in
coordinate system of worfj is obtained by applying the following equation:

using the eq. (8). It is

_«(1' A
rz( ) - M1/1 “ My, - M2’2 "Mp, 'rl(((p)1=¢1p)

(21)
In eqg. (21) in the matrices the range of paramgiers selected to obtain

the worm wheel tooth surface of a given widih { < ¢, < ¢4y). In the Fig. 8

the tooth surface of worm wheel generated by exdrentting edge is plotted.

| i

.30 -20 -10 0 10 20 30

Fig. 8. Surface of worm wheel tooth generated hyeexe cutting edge

From the surface shown in Fig. 8 region | and #Vé to be separated. The
two contact lines in the area of the extreme cgtilge of the tool are the
boundaries of the regions (Fig. 5). For regionthis contact line, which doesn’t

lie in the axial plane of tooFﬁ’l) marked in Fig. 5). For region Il is the contact

line lying in the axial pIaneffE’z) marked in Fig. 5). Figure 9 shows the

separated region | and Il of the worm wheel tosthiface generated during
machining through the extreme cutting edge of tiod t



Mathematical model of tooth flank ... 39

The tooth surface of worm wheel is generated byctirabination of the
regions I, Il, 111

(1) _ (1) (1) (1)
r - rZ_Region_I U rZ_Region_II rZ_Region_III (22)

Fig. 9. The separated region | and Il of the wavheel tooth surface generated during machining
through the extreme edge of the tool (here gerlatéhe tool with concave profile)

The worm wheel tooth surface formed by a tool wetimcave tooth profile
is shown in Fig. 10.

-30 -20 -10 0 10 20 30

Fig. 10. The worm wheel tooth surface of globoidmv@ear generated by the tool
with concave profile
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Figure 11 shows the worm wheel tooth surface forrhgda tool with
convex tooth profile.

W
Wdithin
i
\\\'IIIIIII

-30 -20 -10 0 10 20 30
L
Fig. 11. The worm wheel tooth surface of globoidmva@ear generated by the tool
with convex profile

Conclusion

Presented mathematical model of tooth flank surfateworm wheel
generated by a globoid worm hob with arc profilewsh that its determination is
complex. The character of the contact lines betwserm and worm wheel
depends on the type of tooth profile of worm. Theape of contact lines for
concave or convex worm tooth profile can have tigmiicant influence for
lubrication conditions. The extreme cutting edgevofm hob has a considerable
impact by generating the tooth side of worm whéels circa 85% of tooth
width of worm wheel. The presented mathematical@hoéitooth flank of worm
wheel with mathematical model of worm tooth canused to analyze e.g. the
contact pattern of the gear.
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