PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Deep Transfer Learning Framework for the Multi-Class Classification of Vector Mosquito Species

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mosquito borne diseases pose a substantial threat to public health. Vector surveillance and vector control approaches are critical to diminish the mosquito population. Quick and precise identification of mosquito species predominant in a geographic area is essential for ecological monitoring and devise effective vector control strategies in the targeted areas. There has been a growing interest in fine tuning the pretrained deep convolutional neural network models for the vision based identification of insect genera, species and gender. Transfer learning is a technique commonly applied to adapt a pre-trained model for a specific task on a different dataset especially when the new dataset has limited number of training images. In this research work, we investigate the capability of deep transfer learning to solve the multi-class classification problem of mosquito species identification. We train the pretrained deep convolutional neural networks in two transfer learning approaches: (i) Feature Extraction and (ii) Fine-tuning. Three state-of-the-art pretrained models including VGG-16, ResNet-50 and GoogLeNet were trained on a dataset of mobile captured images of three vector mosquito species: Aedes Aegypti , Anopheles Stephensi and Culex Quinquefasciatus. The results of the experiments show that GoogLeNet outperformed the other two models by achieving classification accuracy of 92.5% in feature extraction transfer learning and 96% with fine-tuning. Also, it was observed that fine-tuning the pretrained models improved the classification accuracy.
Rocznik
Strony
183--191
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Department of Computer Engg., Vishwakarma University, Survey No. 2, 3, 4, Laxmi Nagar, Kondhwa Budruk,Pune, 411 048, Maharashtra, India
autor
  • Department of Computer Engg., Vishwakarma University, Survey No. 2, 3, 4, Laxmi Nagar, Kondhwa Budruk,Pune, 411 048, Maharashtra, India
Bibliografia
  • 1. Barker, J.R., & MacIsaac, H.J. (2022). Species distribution models applied to mosquitoes: Use, quality assessment, and recommendations for best practice. Ecological Modelling, 472(June), 110073. https://doi.org/10.1016/j.ecolmodel.2022.110073
  • 2. Benelli, G., Jeffries, C.L., & Walker, T. (2016). Biological control of mosquito vectors: Past, present, and future. Insects, 7(4), 1–18. https://doi.org/10.3390/insects7040052
  • 3. Chen, Y., Why, A., Batista, G., Mafra-Neto, A., & Keogh, E. (2014). Flying insect detection and classification with inexpensive sensors. Journal of Visualized Experiments, 92, 1–9. https://doi.org/10.3791/52111
  • 4. De Los Reyes, A.M.M., Reyes, A.C.A., Torres, J.L., Padilla, D.A., & Villaverde, J. (2016). Detection of Aedes Aegypti mosquito by digital image processing techniques and support vector machine. 2016 IEEE Region 10 Conference (TENCON), 2342–2345. https://doi.org/10.1109/TENCON.2016.7848448
  • 5. de Souza, A.L. da S., Multini, L.C., Marrelli, M.T., & Wilke, A.B.B. (2020). Wing geometric morphometrics for identification of mosquito species (Diptera: Culicidae) of neglected epidemiological importance. Acta Tropica, 211(June), 105593. https://doi.org/10.1016/j.actatropica.2020.105593
  • 6. National Center for Vector Borne Diseases Control (2023). Retrieved June 3, 2023, from https://ncvbdc.mohfw.gov.in/index1.php?lang=1&level=1&sublinkid=5776&lid=3690
  • 7. Fernandes, M.S., Cordeiro, W., & Recamonde-Mendoza, M. (2021). Detecting Aedes aegypti mosquitoes through audio classification with convolutional neural networks. Computers in Biology and Medicine, 129(November 2020), 104152. https://doi.org/10.1016/j.compbiomed.2020.104152
  • 8. Fournet, F., Jourdain, F., Bonnet, E., Degroote, S., & Ridde, V. (2018). Effective surveillance systems for vector-borne diseases in urban settings and translation of the data into action: A scoping review Frédéric Simard. Infectious Diseases of Poverty, 7(1), 1–14. https://doi.org/10.1186/s40249-018-0473-9
  • 9. Fuchida, M., Pathmakumar, T., Mohan, R.E., Tan, N., & Nakamura, A. (2017). Vision-based perception and classification of mosquitoes using support vector machine. Applied Sciences (Switzerland), 7(1). https://doi.org/10.3390/app7010051
  • 10. Goodwin, A., Glancey, M., Ford, T., Scavo, L., Brey, J., Heier, C., Durr, N.J., & Acharya, S. (2020). Development of a low-cost imaging system for remote mosquito surveillance. Biomedical Optics Express, 11(5), 2560. https://doi.org/10.1364/boe.382391
  • 11. Image Dataset of Aedes and Culex Mosquito Species | IEEE DataPort. (n.d.). Retrieved June 3, 2023, from https://ieee-dataport.org/open-access/image-dataset-aedes-and-culex-mosquito-species
  • 12. ImageNet. (n.d.). Retrieved June 3, 2023, from https://www.image-net.org/challenges/LSVRC/
  • 13. Joshi, A., & Miller, C. (2021). Review of machine learning techniques for mosquito control in urban environments. Ecological Informatics, 61. https://doi.org/10.1016/j.ecoinf.2021.101241
  • 14. Kasinathan, T., Singaraju, D., & Uyyala, S.R. (2021). Insect classification and detection in field crops using modern machine learning techniques. Information Processing in Agriculture, 8(3), 446–457. https://doi.org/10.1016/j.inpa.2020.09.006
  • 15. Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90. https://doi.org/10.1145/3065386
  • 16. Martineau, M., Conte, D., Raveaux, R., Arnault, I., Munier, D., Venturini, G., Martineau, M., Conte, D., Raveaux, R., Arnault, I., & Munier, D. (2017). A survey on image-based insect classification To cite this version : HAL Id : hal-01441203.
  • 17. Minakshi, M. (2018a). A Machine Learning Framework to Classify Mosquito Species from Smartphone Images.
  • 18. Minakshi, M., Bharti, P., & Chellappan, S. (2018b). Leveraging smart-phone cameras and image processing techniques to classify mosquito species. ACM International Conference Proceeding Series, 77–86. https://doi.org/10.1145/3286978.3286998
  • 19. Minakshi, M., Bharti, P., McClinton, W.B., Mirzakhalov, J., Carney, R.M., & Chellappan, S. (2020). Automating the Surveillance of Mosquito Vectors from Trapped Specimens Using Computer Vision Techniques. COMPASS 2020 - Proceedings of the 2020 3rd ACM SIGCAS Conference on Computing and Sustainable Societies, 105–115. https://doi.org/10.1145/3378393.3402260
  • 20. Motta, D., Santos, A.Á.B., Winkler, I., Machado, B.A.S., Pereira, D.A.D.I., Cavalcanti, A.M., Fonseca, E.O.L., Kirchner, F., & Badaró, R. (2019). Application of convolutional neural networks for classification of adult mosquitoes in the field. PLoS ONE, 14(1), 1–18. https://doi.org/10.1371/journal.pone.0210829
  • 21. Okayasu, K., Yoshida, K., Fuchida, M., & Nakamura, A. (2019). Vision-based classification of mosquito species: Comparison of conventional and deep learning methods. Applied Sciences (Switzerland), 9(18). https://doi.org/10.3390/app9183935
  • 22. Ouyang, T.H., Yang, E.C., Jiang, J.A., & Lin, T.Te. (2015). Mosquito vector monitoring system based on optical wingbeat classification. Computers and Electronics in Agriculture, 118, 47–55. https://doi.org/10.1016/J.COMPAG.2015.08.021
  • 23. Pan, S.J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345–1359. https://doi.org/10.1109/TKDE.2009.191
  • 24. Park, J., Kim, D.I., Choi, B., Kang, W., & Kwon, H.W. (2020). Classification and Morphological Analysis of Vector Mosquitoes using Deep Convolutional Neural Networks. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-57875-1
  • 25. Pise, R., Patil, K., Laad, M., & Pise, N. (2022a). Dataset of vector mosquito images. Data in Brief, 45, 108573. https://doi.org/10.1016/j.dib.2022.108573
  • 26. Pise, R., Patil, K., & Pise, N. (2022b). Automatic Classification of Mosquito Genera Using Transfer Learning. Journal of Theoretical and Applied Information Technology, 100(7), 1929–1940.
  • 27. Rustam, F., Reshi, A.A., Aljedaani, W., Alhossan, A., Ishaq, A., Shafi, S., Lee, E., Alrabiah, Z., Alsuwailem, H., Ahmad, A., & Rupapara, V. (2022). Vector mosquito image classification using novel RIFS feature selection and machine learning models for disease epidemiology. Saudi Journal of Biological Sciences, 29(1), 583–594. https://doi.org/10.1016/j.sjbs.2021.09.021
  • 28. Sasmita, H.I., Neoh, K.B., Yusmalinar, S., Anggraeni, T., Chang, N.T., Bong, L.J., Putra, R.E., Sebayang, A., Silalahi, C.N., Ahmad, I., & Tu, W.C. (2021). Ovitrap surveillance of dengue vector mosquitoes in bandung city, west java province, Indonesia. PLoS Neglected Tropical Diseases, 15(10), 1–18. https://doi.org/10.1371/journal.pntd.0009896
  • 29. Siddiqui, A.A.I., & Kayte, D.C. (2022). Mosquito tracking, classification, and identification: A glance at the technologies available. International Journal of Mosquito Research, 9(2), 104–110. https://doi.org/10.22271/23487941.2022.v9.i2b.606
  • 30. Silva, D.F., De Souza, V.M.A., Batista, G.E.A.P.A., Keogh, E., & Ellis, D.P.W. (2013). Applying machine learning and audio analysis techniques to insect recognition in intelligent traps. Proceedings - 2013 12th International Conference on Machine Learning and Applications, ICMLA 2013, 1, 99–104. https://doi.org/10.1109/ICMLA.2013.24
  • 31. Spitzen, J., & Takken, W. (2018). Keeping track of mosquitoes: a review of tools to track, record and analyse mosquito flight. Parasites & Vectors 2018 11:1, 11(1), 1–11. https://doi.org/10.1186/S13071-018-2735-6
  • 32. Valan, M., Makonyi, K., Maki, A., Vondráček, D., & Ronquist, F. (2019). Automated Taxonomic Identification of Insects with Expert-Level Accuracy Using Effective Feature Transfer from Convolutional Networks. Systematic Biology, 68(6), 876–895. https://doi.org/10.1093/sysbio/syz014
  • 33. WHO (2000). Vector-borne diseases. Retrieved June 3, 2023, from https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
  • 34. Virginio, F., Domingues, V., da Silva, L. C.G., Andrade, L., Braghetto, K.R., & Suesdek, L. (2021). WingBank: A Wing Image Database of Mosquitoes. Frontiers in Ecology and Evolution, 9(April), 1–15. https://doi.org/10.3389/fevo.2021.660941
  • 35. Weiss, K., Khoshgoftaar, T.M., & Wang, D.D. (2016). A survey of transfer learning. In Journal of Big Data (Vol. 3, Issue 1). Springer International Publishing. https://doi.org/10.1186/s40537-016-0043-6
  • 36. Wilke, A.B.B., De Oliveira Christe, R., Multini, L.C., Vidal, P.O., Wilk-Da-silva, R., De Carvalho, G.C., & Marrelli, M.T. (2016). Morphometric wing characters as a tool for mosquito identification. PLoS ONE, 11(8), 1–12. https://doi.org/10.1371/journal.pone.0161643
  • 37. Wilson, A.L., Courtenay, O., Kelly-Hope, L.A., Scott, T.W., Takken, W., Torr, S.J., & Lindsay, S.W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. In PLoS Neglected Tropical Diseases (Vol. 14, Issue 1). https://doi.org/10.1371/journal.pntd.0007831
  • 38. Xia, D., Chen, P., Wang, B., Zhang, J., & Xie, C. (2018). Insect detection and classification based on an improved convolutional neural network. Sensors (Switzerland), 18(12), 1–12. https://doi.org/10.3390/s18124169
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-729d0b5a-2ddc-4492-89a5-c54f35519d09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.