PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cat Swarm Optimization with Lévy Flight for Link Load Balancing in SDN

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efficient network communications with optimal network path selection play a key role in the modern world. Conventional path selection algorithms often face numerous challenges resulting from their limited scope of application. This research proposes a modified swarm intelligence approach, known as cat swarm optimization (CSO) with Lévy flight that is used for network link load balancing and routing optimization. CSO’s quick convergence capabilities are suitable for rapid response applications; however, the approach is prone to getting stuck in local optima. Lévy flight enhances search efficiency, thus aiding in escaping local optima. CSO with Lévy flight (CSO-LF) outperforms original CSO and PSO algorithms in terms of solution quality and robustness across various benchmarks. The proposed method has been evaluated in software defined networks (SDN) with nine benchmark functions assessed. CSO-LF achieved the best scores in both the best and worst positions. When used in SDN for link load balancing, CSO-LF demonstrated lower latency and higher throughput than CSO, and lower latency and higher throughput than PSO in a fat tree topology.
Rocznik
Tom
Strony
10--20
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
  • Sunyani Technical University, Sunyani, Ghana
Bibliografia
  • [1] Nature-Inspired Algorithms and Applied Optimization, ed. by X.-S. Yang, Springer, Cham, 341 p., 2018 (https://doi.org/10.1007/978-3-319-67669-2).
  • [2] P. Goransson, C. Black, and T. Culver, Software Defined Networks, A Comprehensive Approach, 2nd ed., Elsevier, Cambridge, 2017 (ISBN: 9780128045794).
  • [3] H. Qi and K. Li, Software Defined Networking Applications in Distributed Datacenters, Springer, Cham, 76 p., 2016 (https://doi.org/10.1007/978-3-319-33135-5).
  • [4] J. Kennedy and R.C. Eberhart, “Particle Swarm Optimization”, Proc. of the IEEE International Conference on Neural Networks, pp. 1942–1948, 1995 (https://doi.org/10.1109/ICNN.1995.488968).
  • [5] X. Hu and R.C. Eberhart, “Adaptive Particle Swarm Optimization: Detection and Response to Dynamic Systems”, Proc. of the 2002 Congress on Evolutionary Computation. CEC’02, pp. 1666–1670, 2002 (https://doi.org/10.1109/CEC.2002.1004492).
  • [6] M. Kong, P. Tian, and Y. Kao, “A New Ant Colony Optimization Algorithm for the Multidimensional Knapsack Problem”, Computers & Operations Research, vol. 35, pp. 2672–2863, 2008 (https://doi.org/10.1016/j.cor.2006.12.029).
  • [7] V. Pureza and P.M. Franca, “Vehicle Routing Problems via Tabu Search Metaheuristic”, Centre De Recherche Sur Les Transports Publication, pp. 142–149, 1991.
  • [8] H. Keller, U. Pferschy, and D. Pisinger, Knapsack Problem, Springer, Berlin, 568 p., 2003 (https://doi.org/10.1007/978-3-540-24777-7).
  • [9] S.C. Chu, P.W. Tsai, and J.S. Pan, “Cat Swarm Optimization”, PRICAI 2006: Trends in Artificial Intelligence, pp. 854–858, 2006 (https://doi.org/10.1007/978-3-540-36668-3_94).
  • [10] O. Bozorg-Haddad, Advanced Optimization by Nature-Inspired Algorithms, Springer, Singapore, 174 p., 2018 (https://doi.org/10.1007/978-981-10-5221-7).
  • [11] I. Boussaid, J. Lepagnot, and P. Siarry, “A Survey on Optimization Metaheuristics”, Information Sciences, vol. 237, pp. 82–117, 2013 (https://doi.org/10.1016/j.ins.2013.02.041).
  • [12] M. Andresen et al., “Simulated Annealing and Genetic Algorithms for Minimizing Mean Flow Time in an Open Shop”, Mathematical and Computer Modelling, vol. 48, pp. 1279–1293, 2008 (https://doi.org/10.1016/j.mcm.2008.01.002).
  • [13] N. Feamster, J. Rexford, and E. Zegura, “The Road to SDN: An Intellectual History of Programmable Networks”, ACM SIGCOMM Computer Communication Review, vol. 44, pp. 87–98, 2014 (https://doi.org/10.1145/2602204.2602219).
  • [14] M. Hamdan et al., “A Comprehensive Survey of Load Balancing Techniques on Software-defined Network”, Journal of Network and Computer Applications, vol. 174, 2021 (https://doi.org/10.1 016/j.jnca.2020.102856).
  • [15] J. Kolodziejczyk and Y. Tarasenko, “Particle Swarm Optimization and Lévy Flight Integration”, Procedia Computer Science, vol. 192, pp. 4658–4671, 2021 (https://doi.org/10.1016/j.procs.2021.09.244).
  • [16] R. Bousmaha, R.M. Hamou, and A. Amine, “Automatic Selection of Hidden Neurons and Weights in Neural Networks for Data Classification Using Hybrid Particle Swarm Optimization, Multi-verse Optimization Based on Lévy Flight”, Evolutionary Intelligence, vol. 15, pp. 1695–1714, 2022 (https://doi.org/10.1007/s12065021-00579-w).
  • [17] X. Liu, G.-G. Wang, and L. Wang, “LSFQPSO: Quantum Particle Swarm Optimization with Optimal Guided Lévy Flight and Straight Flight for Solving Optimization Problems”, Engineering with Computers, vol. 38, pp. 4651–4682, 2022 (https://doi.org/10.1007/s00366-021-01497-2).
  • [18] Y. Liu and B. Cao, “A Novel Ant Colony Optimization Algorithm with Lévy Flight”, IEEE Access, vol. 8, pp. 67205–67213, 2020 (https://doi.org/10.1109/ACCESS.2020.2985498).
  • [19] Y. Liu, B. Cao, and H. Li, “Improving Ant Colony Optimization Algorithm with Epsilon Greedy and Lévy Flight”, Complex and Intelligent Systems, vol. 7, pp. 1711–1722, 2021 (https://doi.org/10.1007/s40747-020-00138-3).
  • [20] Z. Zhang, Z. Xu, S. Luan, and X. Li, “A Hybrid Max-min Ant System by Lévy Flight and Opposition-based Learning”, International Journal of Pattern Recognition and Artificial Intelligence, vol. 35, 2021 (https://doi.org/10.1142/S0218001421510137).
  • [21] S. Verma, S.P. Sahu, and T.P. Sahu, “MCSO: Lévy’s Flight Guided Modified Chicken Swarm Optimization”, IETE Journal of Research, vol. 70, 2024 (https://doi.org/10.1080/03772063.2023.21 94265).
  • [22] A. Yonar and N.Y. Pehlivan, “Artificial Bee Colony with Lévy Flights for Parameter Estimation of 3-pWeibull Distribution”, Iranian Journal of Science and Technology, vol. 44, pp. 851–864, 2020 (https: //doi.org/10.1007/s40995-020-00886-4).
  • [23] Y. Chen, J. Xi, H. Wang, and X. Liu, “Grey Wolf Optimization Algorithm Based on Dynamically Adjusting Inertial Weight and Lévy Flight Strategy”, Evolutionary Intelligence, vol. 16, pp. 917–927, 2023 (https://doi.org/10.1007/s12065-022-00705-2).
  • [24] X.-S. Yang, Nature-Inspired Optimization Algorithms, Elsevier, Waltham, 222 p., 2014 (https://doi.org/10.1016/C2013-0-01368-0).
  • [25] X.-S. Yang, Nature-inspired Algorithms and Applied Optimization, Springer, Cham, 341 p., 2018 (https://doi.org/10.1007/978-3-319-67669-2).
  • [26] A.O. Jefia, S.I. Popoola, and A.A. Atayero, “Software-defined Networking: Current Trends, Challenges, and Future Directions”, Proc. of the International Conference on Industrial Engineering and Operations Management, pp. 1677–1685, 2018 (https://doi.org/10.46254/NA03.20180435).
  • [27] A. Chechkin, R. Metzler, J. Klafter, and V.Y. Gonchar, “Introduction to the Theory of Lévy Flights”, in: Anomalous Transport: Foundations and Applications, pp. 129–162, 2008 (https://doi.org/10.1002/9783527622979.ch5).
  • [28] A.A. Al-Temeemy, J.W. Spencer, and J.F. Ralph, “Lévy Flights for Improved Ladar Scanning”, 2010 IEEE International Conference on Imaging Systems and Techniques, Thessaloniki, Greece, 2010 (https://doi.org/10.1109/IST.2010.5548519).
  • [29] S. Surjanovic and D. Bingham, “Optimization Test Problems”, Virtual Library of Simulation Experiments: Test Functions and Datasets, SFU [Online] (https://www.sfu.ca/~ssurjano/optimization.html).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7295dfc7-d90a-4dcb-a203-844834616aea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.