PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental verification of a walking robot self - localization system with the kinect sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
National Conference on Robotics (12, 12-16.2012, Świeradów-Zdrój, Poland)
Języki publikacji
EN
Abstrakty
EN
In this paper we investigate methods for self-localisation of a walking robot with the Kinect 3D active range sensor. The Iterative Closest Point (ICP) algorithm is considered as the basis for the computation of the robot rotation and translation between two viewpoints. As an alternative, a feature-based method for matching of 3D range data is considered, using the Normal Aligned Radial Feature (NARF) descriptors. Then, it is shown that NARFs can be used to compute a good initial estimate for the ICP algorithm, resulting in convergent estimation of the sensor egomotion. Experimental results are provided.
Twórcy
autor
  • Poznań University of Technology, Institute of Control and Information Engineering, ul. Piotrowo 3A, 60-965 Poznań, Poland
  • Poznań University of Technology, Institute of Control and Information Engineering, ul. Piotrowo 3A, 60-965 Poznań, Poland
Bibliografia
  • [1] K. S. Arun, T. S. Huang, S. Blostein, ”Least-squares fitting of two 3-D point sets”, IEEE Trans. on Pattern
  • Analysis and Machine Intelligence, vol. 9, no. 5, 1987, pp. 698–700.
  • [2] D. Belter, P. Skrzypczyński, ”Rough terrain mapping and classification for foothold selection in a walking robot”, Journal of Field Robotics, 28(4), 2011, pp. 497–528.
  • [3] D. Belter, P. Skrzypczyński, Precise selflocalization of a walking robot on rough terrain using PTAM, in: Adaptive Mobile Robotics (N. Cowan et al., eds.), Singapore, World Scientific 2012, pp. 89–96.
  • [4] P.J. Besl, N.D. McKay, ”A method for registration of 3-D shapes”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 14, 2, 1992, pp. 239–256.
  • [5] S. Choi, T. Kim, W. Yu, ”Performance evaluation of RANSAC family”, In: Proc. British Machine Vision Conference, London, 2009.
  • [6] A. Davison, I. Reid, N. Molton, O. Stasse, ”MonoSLAM: Real-time single camera SLAM”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, 2007, pp. 1052–1067.
  • [7] D.W. Eggert, A. Lorusso, R.B. Fisher, ”Estimating 3-D rigid body transformations: a comparison of four major algorithms”, Machine Vision and Applications, vol. 9, no. 5–6, 1997, pp. 272-290.
  • [8] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, W. Burgard, ”An evaluation of the RGB-D SLAM system”, in: Proc. IEEE Int. Conf. on Robot. and Automat., St. Paul, 2012, pp. 1691–1696.
  • [9] B. Gaßmann, J. M. Zöllner, R. Dillmann, ”Navigation of walking robots: localisation by odometry”. In: Climbing and Walking Robots VIII, Berlin, Springer 2005, pp. 953–960.
  • [10] P. Henry, M. Krainin, E. Herbst, X. Ren, D. Fox, ”RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments”, Int. Journal of Robotics Research, vol. 31, no.5, 2012, pp. 647–663.
  • [11] S. Izadi et al., ”KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera”, ACM Symp. on User Interface Software and Technology, New York, 2011, pp. 559–568.
  • [12] W. Kabsch, ”A solution of the best rotation to relate two sets of vectors”, Acta Crystallographica 32:922, 1976.
  • [13] G. Klein, D. Murray, ”Parallel tracking and mapping for small AR workspaces”, In: Proc. Int. Symp. on Mixed and Augmented Reality, Nara, 2007, pp. 225–234.
  • [14] D.G. Lowe, ”Distinctive image features from scale-invariant keypoints”, Int. Journal of Computer Vision, vol. 60, 2, 2004, pp. 91–110.
  • [15] P. Łabęcki, P. Skrzypczyński, ”Real-time visual perception for terrain mapping in a walking robot”, In: Adaptive Mobile Robotics (N. Cowan et al., eds.), Singapore, World Scientific 2012, pp. 754–761.
  • [16] M. Nowicki, P. Skrzypczyński, ”Experimental verification of a walking robot self-localization system with the Kinect sensor”, Prace Naukowe Politechniki Warszawskiej – Elektronika. Postępy robotyki, vol. 182, Warsaw, 2012, pp. 561–572 (in Polish).
  • [17] M. Nowicki, P. Skrzypczyński, Robust registration of Kinect range data for sensor motion estimation, in: Computer Recognition Systems 5 (M. Kurzynski, M. Wozniak, eds.), Berlin, Springer-Verlag 2013. (in print)
  • [18] A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann, 6D SLAM – 3D mapping outdoor environments,
  • Journal of Field Robotics, 24(8–9), 2007, pp. 699–722.
  • [19] A. Nüchter, S. Feyzabadi, D. Qiu, S. May, SLAM à la carte – GPGPU for globally consistent scan matching, in: Proc. 5th European Conf. on Mobile Robots (ECMR), Örebro, 2011, pp. 271–276.
  • [20] L. Paz, P. Piniés, J. D. Tardós, J. Neira, Large-scale 6-DOF SLAM with stereo in hand, IEEE Trans. on
  • Robotics, vol. 24, no. 5, 2008, pp. 946–957.
  • [21] PrimeSense, 2010, http://www.primesense.com
  • [22] S. Rusinkiewicz, M. Levoy, ”Eficient variants of the ICP algorithm”, in: Proc. 3rd Int. Conf. On 3D Digital Imaging and Modeling, Quebec, 2001, pp. 145–152.
  • [23] R. B. Rusu, N. Blodow, Z. Marton, M. Beetz, ”Aligning point cloud views using persistent feature histograms”. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Nice, 2008, pp. 3384–3391.
  • [24] R. B. Rusu, S. Cousins, ”3D is here: Point Cloud Library (PCL)”. In: Proc. IEEE Int. Conf. on Robot. and Automat., Shanghai, 2011, pp. 1–4.
  • [25] A. Segal, D. Haehnel, S. Thrun, ”Generalized-ICP”. In: Proc. of Robotics: Science and Systems, Seattle, 2009 (on-line).
  • [26] P. Skrzypczyński, ”Simultaneous localization and mapping: a feature-based probabilistic approach”, Int. Journal of Applied Mathematics and Computer Science, 19(4), 2009, pp. 575–588.
  • [27] P. Skrzypczyński, ”Laser scan matching for selflocalization of a walking robot in man-made environments”,
  • Industrial Robot: An International Journal, 39(3), 2012, pp. 242–250.
  • [28] O. Stasse, A. Davison, R. Sellaouti, K. Yokoi, ”Realtime 3D SLAM for humanoid robot considering
  • pattern generator information”. ”‘n: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Beijing, 2006, pp. 348–355.
  • [29] B. Steder, R. B. Rusu, K. Konolige, W. Burgard, ”Point feature extraction on 3D range scans taking into account object boundaries”. In: Proc. IEEE Int. Conf. on Robot. and Automat., Shanghai, 2011, pp. 2601–2608.
  • [30] A. Stelzer, H. Hirschmüller, M. Görner, ”Stereovision-based navigation of a six-legged walking robot in unknown rough terrain”, Int. Journal of Robotics Research, vol. 31, no. 4, 2012, pp. 381–402.
  • [31] T. Stoyanov, A. Louloudi, H. Andreasson, A. Lilienthal, Comparative evaluation of range sensor accuracy in indoor environments, in: Proc. 5th European Conf. on Mobile Robots (ECMR), Örebro, 2011, pp. 19–24.
  • [32] K. Walas, D. Belter, Messor – Verstatile walking robot for search and rescue missions, Journal of Automation, Mobile Robotics & Intelligent Systems, vol. 5, no. 2, 2011, pp. 28–34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7293dc7e-c0ca-4216-93e0-bcdf86d5c309
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.