PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational equation discovery of relationships between container ship fuel consumption and hull and propeller fouling phenomena

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, when we try to automatize all activities, there is a growing demand for energy in all forms. Increasingly we reach for new energy sources that can be problematic to store or to transport, owing to their toxicity or explosive propensity. The article examines the issues of determining danger zones occurring as a result of liquefied natural gas (LNG) release. The range of danger zones caused through LNG release depends on a multitude of factors. The basic parameter that needs to be considered is a type of the released substance as well as the manner of its release. The range of a danger zone is determined by, inter alia, the concentration of a released substance and the atmospheric conditions existing at the time when depressurization occurs. The article analyses the problem of the range of danger zones in a function of wind speed and surface roughness with a defined value of Pasquill stability for various LNG types, starting with pure methane, and ending with the so-called LNG-heavy. The difficulty of the task becomes more complicated when the analysed surface over which a depressurization incident takes place involves water. The problem deepens even further when the analysed substance possesses explosive properties. Then, apart from regular substance concentration, upper and lower flammability limit ought to be considered. Calculations were conducted with DNV-Phast software, version 7.11.
Rocznik
Strony
24--30
Opis fizyczny
Bibliogr. 11 poz., fig., tab.
Twórcy
  • Maritime University of Szczecin, Poland
Bibliografia
  • 1. Atkinson, G., Cowpe, E., Halliday, J. and Painter, D. (2017). A review of very large vapour cloud explosions: Cloud formation and explosion severity. Journal of Loss Prevention in the Process Industries, 48, pp. 367-375.
  • 2. Basu, R. and Verma M. (2017). An expected consequence approach to assessing the viability of multimodal transportation of crude oil in eastern Canada. Case Studies on Transport Policy, 5(3), pp. 518-526.
  • 3. Bubbico, R., Cave, S. and Mazzarotta, B. (2009). Preliminary risk analysis for LNG tankers approaching a maritime terminal. Journal of Loss Prevention in the Process Industries, 22(5), pp. 634-638.
  • 4. Farfan, J. and Breyer, C. (2017). Structural changes of global power generation capacity towards sustainability and the risk of stranded investments supported by a sustainability indicator. Journal of Cleaner Production, 141, pp. 370-384.
  • 5. Krata, P. and Szlapczynska, J. (2017). Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction. Ocean Engineering, 150, pp. 124-137.
  • 6. Landucci, G., Antonini, A., Tugnoli, A., Bonvicini, S., Molag, M. and Cozanni, V. (2017). HazMat transportation risk assessment: A revisitation in the perspective of the Viareggio LPG accident. Journal of Loss Prevention in the Process Industries, 49(A), pp. 36-46.
  • 7. Liu, X., Li, J. and Li, X. (2017). Study of dynamic risk management system for flammable and explosive dangerous chemicals storage area. Journal of Loss Prevention in the Process Industries, 49(B), pp. 983-988.
  • 8. Mabrouk, A., Boulmakoul, A., Karim, L. and Lbath, A. (2017). Safest and shortest itineraries for transporting hazardous materials using split points of Voronoï spatial diagrams based on spatial modeling of vulnerable zones. Procedia Computer Science, 109, pp. 156-163.
  • 9. PolskieLNG.pl, (2018). Polskie LNG Official Website. [online] Available at: http://www.polskieLNG.pl.
  • 10. Sedlaczek, R., (2008). Boil-Off in Large and Small Scale LNG Chains, Diploma Thesis, Faculty of Engineering Science and Technology, Department of Petroleum Engineering and Applied Geophysics. Available at: http://webcache.googleusercontent.com/search?q=cache:IXeBpJEYMswJ:citeseerx.ist.psu.edu/viewdoc/download%3Fdoi%3D10.1.1.470.6116%26rep%3Drep1%26type%3Dpdf+&cd=1&hl=pl&ct=clnk&gl=pl&client=firefox-b-ab [Accessed 22 Jan. 2018].
  • 11. Ślączka, W. (2011). Estimation of the consequences of LNG vessel tank leakage in the port of Świnoujście. Scientific Journals Maritime University of Szczecin, 25(97), pp. 70-76.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-72911f69-3dac-4ed1-97fb-0e459470db8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.